椭圆的离心率为点在轴上,,且、、三点确定的圆恰好与直线相切.(Ⅰ)求椭圆的方程;(Ⅱ)过作一条与两坐标轴都不垂直的直线交椭圆于、两点,在轴上是否存在定点,使得恰好为△的内角平分线,若存在,求出点的坐标,若不存在,请说明理由.
(本小题满分12分)在△ABC中, 若I是△ABC的内心, AI的延长线交BC于D, 则有称之为三角形的内角平分线定理, 现已知AC=2, BC=3, AB=4, 且, 求实数及的值.
(本小题满分12分) 已知, (1)求和的夹角; (2)当取何值时,与共线? (3)当取何值时,与垂直?
(本小题满分10分)
(本小题满分14分)已知是各项均为正数的等比数列,且, (Ⅰ)求的通项公式; (Ⅱ)设,求数列的前项和。
(本小题满分12分)已知函数f(x)=x-3ax+3x+1。 (Ⅰ)设a=2,求f(x)的单调期间; (Ⅱ)设f(x)在区间(2,3)中至少有一个极值点,求a的取值范围。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号