已知中心在原点,焦点在x轴上的椭圆C的离心率为 ,且经过点M
.
(1)求椭圆C的方程;
(2)是否存在过点P(2,1)的直线l1与椭圆C相交于不同的两点A,B,满足·
=
2?若存在,求出直线l1的方程;若不存在,请说明理由.
α、β是两个不同的平面,m,n是平面α及β之外的两条不同直线,给出四个论断:①m⊥n,②α⊥β,③n⊥β,④m⊥α.以其中三个论断作为条件,余下的一个论断作为结论,写出你认为正确的一个命题,并证明它.
如图在ΔABC中, AD⊥BC,ED=2AE,过E作FG∥BC,且将ΔAFG沿FG折起,使∠A'ED=60°,求证:A'E⊥平面A'BC
![]() |
两个相交平面a、b 都垂直于第三个平面g ,那么它们的交线a一定和第三个平面垂直.
已知:AB与CD为异面直线,AC=BC,AD=BD.
求证:AB⊥CD.
已知四面体S-ABC中,SA⊥底面ABC,△ABC是锐角三角形,H是点A在面SBC上的射影.求证:H不可能是△SBC的垂心.