游客
题文

如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,tan A=,AD=20.求BC的长.

科目 数学   题型 解答题   难度 中等
知识点: 解直角三角形
登录免费查看答案和解析
相关试题

如图,抛物线y = —2x 2 +x+1交y轴于点A,交x轴正半轴于点B.P为线段AB上一动点,作直线PC⊥PO,交过点B垂直于x轴的直线于点C.过P点作直线MN平行于x轴,交y轴于点M,交过点B垂直于x轴的直线于点N.

(1)求线段AB长;
(2)证明:OP=PC;
(3)当点P在第一象限时,设AP长为m,⊿OBC的面积为S,请求出S与m间的函
数关系式,并写出自变量m的取值范围;
(4)当点P在线段AB上移动时,点C也随之在直线x=1上移动,⊿PBC是否可能成为等腰三角形?如果可能,直接写出所有能使⊿PBC成为等腰三角形的点P的坐标;如果不可能,请说明理由.

把两个全等的等腰直角三角形ABC和EFG(其直角边长均为4)叠放在一起(如图①),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点逆时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).

(1)在上述旋转过程中,BH与CK有怎样的数量关系?四边形CHGK的面积有何变化?证明你发现的结论;(要有辅助线哟!)
(2)连接HK,在上述旋转过程中,设BH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围;
(3)在(2)的前提下,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的,若存在,求出此时x值;若不存在,说明理由。

丹东市某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?

如图,为半圆的直径,点C在半圆上,过点的平行线交于点,交过点的直线于点,且

(1)求证:是半圆O的切线;
(2)若,AC=2,求的长

如图,已知反比例函数的图象经过点(,8),直线经过该反比例函数图象上的点Q(4,).

(1)求上述反比例函数和直线的函数表达式;
(2)设该直线与轴、轴分别相交于A 、B两点,与反比例函数图象的另一个交点为P,连结0P、OQ,求△OPQ的面积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号