游客
题文

阅读课本材料,解答后面的问题.
折纸与证明
折纸,常常能为证明一个命题提供思路和方法.例如,在△ABC中,AB>AC(图27-1),怎样证明∠C>
∠B呢?
把AC沿∠A的平分线AD翻折,因为AB>AC,所以,点C落在AB上的点C’处(图27-2).于是,由∠AC’D>∠B,可得∠C>∠B.
在△ABC中,∠B=2∠C,点D为线段BC上一动点,当AD满足某种条件时,探讨在线段AB、BD、CD、AC四条线段中,某两条或某三条线段之间存在的数量关系.
(1)如图3,当AD⊥BC时,求证:AB+BD=DC;

(2)如图4,当AD是∠BAC的角平分线时,写出AB、BD、AC的数量关系,并证明.

科目 数学   题型 解答题   难度 中等
知识点: 三角形的五心
登录免费查看答案和解析
相关试题

(本小题满分8分)
某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为i00分)如图所示.

(1)根据图示填写下表;

(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;
(3)计算两班复赛成绩的方差。

(本小题满分8分)如图,某校数学兴趣小组的同学欲测量一座垂直于地面的古塔BD的高度,他们先在A处测得古塔顶端点D的仰角为45°,再沿着BA的方向后退20m至C处,测得古塔顶端点D的仰角为30°。求该古塔BD的高度(,结果保留一位小数)。

(本题共两小题.每小题6分.满分l2分)
(1)计算:
(2)求满足不等式组的整数解。

已知抛物线经过A(3,0), B(4,1)两点,且与y轴交于点C.
(1)求抛物线的函数关系式及点C的坐标;
(2)如图(1),连接AB,在题(1)中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)如图(2),连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求点E的坐标.

如图,梯形ABCD中,AD∥BC,BC=20cm,AD=10cm,现有两个动点P、Q
分别从B、D两点同时出发,点P以每秒2cm的速度沿BC向终点C移动,点Q以每秒1cm
的速度沿DA向终点A移动,线段PQ与BD相交于点E,过E作EF∥BC交CD于点F,射线
QF交BC的延长线于点H,设动点P、Q移动的时间为t(单位:秒,0<t<10).
(1)当t为何值时,四边形PCDQ为平行四边形?
(2)在P、Q移动的过程中,线段PH的长是否发生改变?如果不变,求出线段PH的长;如果改变,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号