已知函数(
).
(1)若,当
时,求
的单调递减区间;
(2)若函数有唯一的零点,求实数
的取值范围.
设,圆
:
与
轴正半轴的交点为
,与曲线
的交点为
,直线
与
轴的交点为
.
(1)用表示
和
;
(2)求证:;
(3)设,
,求证:
.
设,函数
.
(1) 若,求曲线
在
处的切线方程;
(2)若无零点,求实数
的取值范围;
(3)若有两个相异零点
,求证:
.
已知圆,圆
,动点
到圆
,
上点的距离的最小值相等.
(1)求点的轨迹方程;
(2)点的轨迹上是否存在点
,使得点
到点
的距离减去点
到点
的距离的差为
,如果存在求出
点坐标,如果不存在说明理由.
佛山某学校的场室统一使用“佛山照明”的一种灯管,已知这种灯管使用寿命(单位:月)服从正态分布
,且使用寿命不少于
个月的概率为
,使用寿命不少于
个月的概率为
.
(1)求这种灯管的平均使用寿命;
(2)假设一间功能室一次性换上支这种新灯管,使用
个月时进行一次检查,将已经损坏的灯管换下(中途不更换),求至少两支灯管需要更换的概率.
如图,三棱锥中,
底面
,
,
,
为
的中点,点
在
上,且
.
(1)求证:平面平面
;
(2)求平面与平面
所成的二面角的平面角(锐角)的余弦值.