选修4-4:极坐标系与参数方程
已知曲线的参数方程为
(
为参数),以直角坐标系原点为极点,
轴正半轴为极轴建立极坐标系.
(1)求曲线的极坐标方程,并说明其表示什么轨迹.
(2)若直线的极坐标方程为 ,求直线被曲线
截得的弦长.
已知数列的各项均为正整数,对于任意n∈N*,都有
成立,且
.
(1)求,
的值;
(2)猜想数列的通项公式,并给出证明.
(本小题满分10分)如图,在直三棱柱中,已知
,
,
,点
,
分别在棱
,
上,且
,
,
.
(1)当时,求异面直线
与
所成角的大小;
(2)当直线与平面
所成角的正弦值为
时,求
的值.
在平面直角坐标系中,已知曲线
的参数方程是
(
是参数),若以
为极点,
轴的正半轴为极轴,取与直角坐标系中相同的单位长度,建立极坐标系,求曲线
的极坐标方程.
已知二阶矩阵A有特征值及对应的一个特征向量
和特征值
及对应的一个特征向量
,试求矩阵A.
已知数列是等差数列,其前n项和为Sn,若
,
.
(1)求;
(2)若数列{Mn}满足条件: ,当
时,
-
,其中数列
单调递增,且
,
.
①试找出一组,
,使得
;
②证明:对于数列,一定存在数列
,使得数列
中的各数均为一个整数的平方.