以平面直角坐标系的原点为极点,轴正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,设点的极坐标为,直线过点且与极轴成角为,圆的极坐标方程为.(1) 写出直线参数方程,并把圆的方程化为直角坐标方程;(2) 设直线与曲线圆交于、两点,求的值.
已知x=1是函数的一个极值点, (Ⅰ)求a的值; (Ⅱ)当时,证明:
在中,分别为角的对边,△ABC的面积S满足. (1)求角的值; (2)若,设角的大小为用表示,并求的取值范围.
已知(a是常数,a∈R) (Ⅰ)当a=1时求不等式的解集; (Ⅱ)如果函数恰有两个不同的零点,求a的取值范围.
已知直线是过点,方向向量为的直线,圆方程 (1)求直线的参数方程 (2)设直线与圆相交于两点,求的值
如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连结EC、CD. (Ⅰ)求证:直线AB是⊙O的切线; (Ⅱ)若tan∠CED=,⊙O的半径为3,求OA的长.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号