设关于的一元二次方程
.
(1)若是从1,2,3,4四个数中任取的一个数,
是从0,1,2三个数中任取的一个数,求上述方程有两个不等实根的概率;
(2)若是从区间
任取的一个数,
是从区间
任取的一个数,求上述方程有实根的概率.
某市规定,高中学生在校期间须参加不少于80小时的社区服务才合格.某校随机抽取20位学生参加社区服务的数据,按时间段(单位:小时)进行统计,其频率分布直方图如图所示.
(Ⅰ)求抽取的20人中,参加社区服务时间不少于90小时的学生人数;
(Ⅱ)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率.
在中,
,
,
分别是角
的对边.已知
,
.
(1)若,求角
的大小;
(2)若,求边
的长.
已知,
是函数
的两个零点,其中常数
,
,设
.
(Ⅰ)用,
表示
,
;
(Ⅱ)求证:;
(Ⅲ)求证:对任意的.
已知椭圆的中心在原点
,焦点在
轴上,离心率为
,右焦点到右顶点的距离为
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)是否存在与椭圆交于
两点的直线
:
,使得
成立?若存在,求出实数
的取值范围,若不存在,请说明理由.
已知函数,
.
(Ⅰ)若曲线在点
处的切线与直线
垂直,求
的值;
(Ⅱ)求函数的单调区间;
(Ⅲ)设,当
时,都有
成立,求实数
的取值范围.