某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,有如下探讨:
甲同学:我发现这种多边形不一定是正多边形.如圆内接矩形不一定是正方形.
乙同学:我知道边数为3时,它是正三角形;我想,边数为5时,它可能也是正五边形…
丙同学:我发现边数为6时,它也不一定是正六边形.如图2,△ABC是正三角形,弧AD、弧BE、弧CF均相等,这样构造的六边形ADBECF不是正六边形.
(1)如图1,若圆内接五边形ABCDE的各内角均相等,则∠ABC= °,并简要说明圆内接五边形ABCDE为正五边形的理由;
(2)如图2,请证明丙同学构造的六边形各内角相等;
(3)根据以上探索过程,就问题“各内角都相等的圆内接多边形是否为正多边形”的结论与“边数n(n≥3,n为整数)”的关系,提出你的猜想(不需证明).
解不等式组:.
计算:;
如图,已知平面直角坐标系中,点
,
为两动点,其中
,连结
,
.
(1)求证:;
(2)当时,抛物线经过
两点且以
轴为对称轴,求抛物线对应的二次函数的关系式;
(3)在(2)的条件下,设直线交
轴于点
,过点
作直线
交抛物线于
两点,问是否存在直线
,使
?若存在,求出直线
对应的函数关系式;若不存在,请说明理由.
已知等腰中,
,
平分
交
于
点,在线段
上任取一点
(
点除外),过
点作
,分别交
于
点,作
,交
于
点,连结
.
(1)求证:四边形为菱形;
(2)当点在何处时,菱形
的面积为四边形
面积的一半?
如图1,线段过圆心
,交圆
于
两点,
切圆
于点
,作
,垂足为
,连结
.
(1)写出图1中所有相等的角(直角除外),并给出证明;
(2)若图1中的切线变为图2中割线
的情形,
与圆
交于
两点,
与
交于点
,
,写出图2中相等的角(写出三组即可,直角除外);
(3)在图2中,证明:.