游客
题文

如图,椭圆长轴的端点为A、B,O为椭圆的中心,F为椭圆的右焦点,且

(1)求椭圆的标准方程;
(2)记椭圆的上顶点为M,直线l交椭圆于P,Q两点,问:是否存在直线l,使点F恰为△PQM的垂心,若存在,求出直线l的方程;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

定义在R上的函数满足对任意实数,总有,且当时,.
(1)试求的值;
(2)判断的单调性并证明你的结论;
(3)设,若,试确定的取值范围.

如图,为多面体,平面与平面垂直,点在线段上,,△OAB,△OAC,△ODE,△ODF都是正三角形。
(Ⅰ)证明直线
(Ⅱ)求棱锥的体积.

将一枚骰子先后抛掷两次,观察向上的点数,
(1)求点数之和是5的概率;
(2)设ab分别是将一枚骰子先后抛掷两次向上的点数,求等式成立的概率。

在某次测验中,有6位同学的平均成绩为75分.用表示编号为的同学所得成绩,且前5位同学的成绩如下:

编号
1
2
3
4
5
成绩
70
76
72
70
72

(1)求第6位同学的成绩,及这6位同学成绩的标准差
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.

随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.
(1)根据茎叶图求这两个班的平均身高;
(2)计算甲班的样本方差;
(3)现从乙班这10名同学中随机抽取1同学,求身高至少为176 cm的同学被抽中的概率.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号