如图,椭圆长轴的端点为A、B,O为椭圆的中心,F为椭圆的右焦点,且,
.
(1)求椭圆的标准方程;
(2)记椭圆的上顶点为M,直线l交椭圆于P,Q两点,问:是否存在直线l,使点F恰为△PQM的垂心,若存在,求出直线l的方程;若不存在,请说明理由.
定义在R上的函数满足对任意实数
,总有
,且当
时,
.
(1)试求的值;
(2)判断的单调性并证明你的结论;
(3)设,若
,试确定
的取值范围.
如图,为多面体,平面
与平面
垂直,点
在线段
上,
,
,△OAB,△OAC,△ODE,△ODF都是正三角形。
(Ⅰ)证明直线;
(Ⅱ)求棱锥的体积.
将一枚骰子先后抛掷两次,观察向上的点数,
(1)求点数之和是5的概率;
(2)设a,b分别是将一枚骰子先后抛掷两次向上的点数,求等式成立的概率。
在某次测验中,有6位同学的平均成绩为75分.用表示编号为
的同学所得成绩,且前5位同学的成绩如下:
编号![]() |
1 |
2 |
3 |
4 |
5 |
成绩![]() |
70 |
76 |
72 |
70 |
72 |
(1)求第6位同学的成绩,及这6位同学成绩的标准差
;
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.
随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.
(1)根据茎叶图求这两个班的平均身高;
(2)计算甲班的样本方差;
(3)现从乙班这10名同学中随机抽取1同学,求身高至少为176 cm的同学被抽中的概率.