为了了解某工业园中员工的颈椎疾病与工作性质是否有关,在工业园内随机的对其中50名工作人员是否患有颈椎疾病进行了抽样调查,得到如下的列联表.
|
患有颈椎疾病 |
没有患颈椎疾病 |
合计 |
白领 |
|
5 |
|
蓝领 |
10 |
|
|
合计 |
|
|
50 |
已知在全部50人中随机抽取1人,抽到患有颈椎疾病的人的概率为.
(1)请将上面的列联表补充完整,并判断是否有99.5%的把握认为患颈椎疾病与工作性质有关?说明你的理由;
(2)已知在患有颈椎疾病的10名蓝领中,有3为工龄在15年以上,现在从患有颈椎疾病的10名蓝领中,选出3人进行工龄的调查,记选出工龄在15年以上的人数为,求
的分布列及数学期望.
参考公式:,其中
.
下面的临界值表仅供参考:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(本小题满分15分)已知函数,若
的最大值为1.
(Ⅰ)求的值,并求
的单调增区间;
(Ⅱ)在中,角
、
、
所对的边是
、
、
,若
,且
,试判断三角形的形状.
(本小题满分14分)设,
是函数
的两个极值点,且
,
且
.
(Ⅰ) 当时,求
的单调递减区间;
(Ⅱ)求证:为定值;
(Ⅲ)求的取值范围.
(本小题满分15分)椭圆C:的长轴是短轴的两倍,点
在椭圆上.不过原点的直线
与椭圆相交于A、B两点,设直线OA、
、OB的斜率分别为
、
、
,且
、
、
恰好构成等比数列,记△
的面积为
.
(Ⅰ)求椭圆C的方程.
(Ⅱ)试判断是否为定值?若是,求出这个值;若不是,请说明理由?
(Ⅲ)求的范围.
(本小题满分15分)已知三棱柱中,侧棱垂直于底面,
,
,
,
,点
在
上.
(Ⅰ) 若是
中点,求证:
平面
;
(Ⅱ)当时,求二面角
的余弦值.
(本小题满分15分)已知等比数列的前n项和为
,且满足
.
(Ⅰ) 求的值及数列
的通项公式;
(Ⅱ)若数列满足
,求数列
的前
项和
.