游客
题文

选修4-4:坐标系与参数方程
在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线和曲线为参数).
(1)将的方程化为普通方程;
(2)判定直线l与曲线 是否相交,若相交求出截得的弦长.

科目 数学   题型 解答题   难度 较易
知识点: 参数方程
登录免费查看答案和解析
相关试题

在△ABC中,内角所对的边分别为,已知.
(1)求证:成等比数列;
(2)若,求△的面积S.

设函数fx)定义在(0,+∞)上,f(1)=0,导函数.
(1)求的单调区间和最小值;
(2)讨论的大小关系;
(3)是否存在x0>0,使得|gx)﹣gx0)|<对任意x>0成立?若存在,求出x0的取值范围;若不存在请说明理由.

乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.
(1)求开始第4次发球时,甲、乙的比分为1比2的概率;
(2)表示开始第4次发球时乙的得分,求的期望.

如图1,,过动点A,垂足D在线段BC上且异于点B,连接AB,沿将△折起,使(如图2所示).

(1)当的长为多少时,三棱锥的体积最大;
(2)当三棱锥的体积最大时,设点分别为棱的中点,试在棱上确定一点,使得,并求与平面所成角的大小.

设等差数列{}的前n项和为Sn,且S4=4S2
(1)求数列{}的通项公式;
(2)设数列{}满足,求{}的前n项和Tn
(3)是否存在实数K,使得Tn恒成立.若有,求出K的最大值,若没有,说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号