选修4-4:坐标系与参数方程
在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线和曲线
(
为参数).
(1)将与
的方程化为普通方程;
(2)判定直线l与曲线 是否相交,若相交求出
被
截得的弦长.
在△ABC中,内角所对的边分别为
,已知
.
(1)求证:成等比数列;
(2)若,求△
的面积S.
设函数f(x)定义在(0,+∞)上,f(1)=0,导函数,
.
(1)求的单调区间和最小值;
(2)讨论与
的大小关系;
(3)是否存在x0>0,使得|g(x)﹣g(x0)|<对任意x>0成立?若存在,求出x0的取值范围;若不存在请说明理由.
乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.
(1)求开始第4次发球时,甲、乙的比分为1比2的概率;
(2)表示开始第4次发球时乙的得分,求
的期望.
如图1,,
,过动点A作
,垂足D在线段BC上且异于点B,连接AB,沿
将△
折起,使
(如图2所示).
(1)当的长为多少时,三棱锥
的体积最大;
(2)当三棱锥的体积最大时,设点
,
分别为棱
,
的中点,试在棱
上确定一点
,使得
,并求
与平面
所成角的大小.
设等差数列{}的前n项和为Sn,且S4=4S2,
.
(1)求数列{}的通项公式;
(2)设数列{}满足
,求{
}的前n项和Tn;
(3)是否存在实数K,使得Tn恒成立.若有,求出K的最大值,若没有,说明理由.