已知数轴上有A、B、C三点,分别代表﹣24,﹣10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒.
(1)甲、乙多少秒后相遇?
(2)甲出发多少秒后,甲到A、B、C三点的距离和为40个单位?
(3)当甲到A、B、C三点的距离和为40个单位时,甲调头返回,当甲、乙在数轴上再次相遇时,相遇点表示的数是 .
人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法:
已知: .
求作: 的平分线.
作法:(1)以点 为圆心,适当长为半径画弧,交 于点 ,交 于点 .
(2)分别以点 , 为圆心,大于 的长为半径画弧,两弧在 的内部相交于点 .
(3)画射线 ,射线 即为所求(如图).
请你根据提供的材料完成下面问题.
(1)这种作已知角的平分线的方法的依据是 .(填序号)
① ② ③ ④
(2)请你证明 为 的平分线.
先化简再求值: ,其中 .
计算: .
如图1所示,在平面直角坐标系中,抛物线 与 轴交于点 , 和点 ,与 轴交于点 .
(1)求抛物线 的表达式;
(2)如图2,将抛物线 先向左平移1个单位,再向下平移3个单位,得到抛物线 ,若抛物线 与抛物线 相交于点 ,连接 , , .
①求点 的坐标;
②判断 的形状,并说明理由;
(3)在(2)的条件下,抛物线 上是否存在点 ,使得 为等腰直角三角形,若存在,求出点 的坐标;若不存在,请说明理由.
如图1,在矩形 中, , ,动点 , 分别从 点, 点同时以每秒1个单位长度的速度出发,且分别在边 , 上沿 , 的方向运动,当点 运动到点 时, , 两点同时停止运动.设点 运动的时间为 ,连接 ,过点 作 , 与边 相交于点 ,连接 .
(1)如图2,当 时,延长 交边 于点 .求证: ;
(2)在(1)的条件下,试探究线段 , , 三者之间的等量关系,并加以证明;
(3)如图3,当 时,延长 交边 于点 ,连接 ,若 平分 ,求 的值.