模具厂计划生产面积为4,周长为的矩形模具.对于的取值范围,小亮已经能用“代数”的方法解决,现在他又尝试从“图形”的角度进行探究,过程如下:
(1)建立函数模型
设矩形相邻两边的长分别为,,由矩形的面积为4,得,即;由周长为,得,即.满足要求的应是两个函数图象在第 一 象限内交点的坐标.
(2)画出函数图象
函数的图象如图所示,而函数的图象可由直线平移得到.请在同一直角坐标系中直接画出直线.
(3)平移直线,观察函数图象
①当直线平移到与函数的图象有唯一交点时,周长的值为 ;
②在直线平移过程中,交点个数还有哪些情况?请写出交点个数及对应的周长的取值范围.
(4)得出结论
若能生产出面积为4的矩形模具,则周长的取值范围为 .
机器人“海宝”在某圆形区域表演“按指令行走”,如图所示,“海宝”从圆心O出发,先沿北偏西67.4°方向行走13米至点A处,再沿正南方向行走14米至点B处,最后沿正东方向行走至点C处,点B、C都在圆O上.
(1)求弦BC的长;
(2)求圆O的半径长.
(本题参考数据:sin 67.4° =,cos 67.4°=
,tan 67.4° =
)
如图,在ABCD中,点E在边BC上,点F在BC的延长线上,且BE=CF。求证:∠BAE=∠CDF
(1)解方程:;
(2)解不等式组
如图,在平面直角坐标系xOy中,已知直线PA是一次函数y=x+m(m>0)的图象,直线PB是一次函数y=-3x+n(n>m)的图象,点P是两直线的交点,点A、B、C、Q分别是两条直线与坐标轴的交点.
(1)用m、n分别表示点A、B、P的坐标及∠PAB的度数;
(2)若四边形PQOB的面积是4,且CQ:AO=2:1,试求点P的坐标,并求出直线PA与PB的函数表达式;
(3)在(2)的条件下,是否存在一点D,使以A、B、P、D为顶点的四边形是平行四边形?若存在,求出点D的坐标;若不存在,请说明理由.
如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△,连结
、
.若∠ACB=30°,AB=2,
=x,四边形
的面积为S.
(1)线段的长度最小值是_____,此时x=" _____"
(2)当x为何时,四边形是菱形?并说明理由;
(3)求S与x的函数关系式,并在直角坐标系中画出这个函数的图象