游客
题文

模具厂计划生产面积为4,周长为m的矩形模具.对于m的取值范围,小亮已经能用“代数”的方法解决,现在他又尝试从“图形”的角度进行探究,过程如下:

(1)建立函数模型

设矩形相邻两边的长分别为xy,由矩形的面积为4,得xy=4,即y=4x;由周长为m,得2(x+y)=m,即y=-x+m2.满足要求的(x,y)应是两个函数图象在第  象限内交点的坐标.

(2)画出函数图象

函数y=4x(x>0)的图象如图所示,而函数y=-x+m2的图象可由直线y=-x平移得到.请在同一直角坐标系中直接画出直线y=-x

(3)平移直线y=-x,观察函数图象

①当直线平移到与函数y=4x(x>0)的图象有唯一交点(2,2)时,周长m的值为  

②在直线平移过程中,交点个数还有哪些情况?请写出交点个数及对应的周长m的取值范围.

(4)得出结论

若能生产出面积为4的矩形模具,则周长m的取值范围为  

科目 数学   题型 解答题   难度 中等
知识点: 反比例函数的性质 反比例函数与一次函数的交点问题 反比例函数的应用 反比例函数综合题
登录免费查看答案和解析
相关试题

机器人“海宝”在某圆形区域表演“按指令行走”,如图所示,“海宝”从圆心O出发,先沿北偏西67.4°方向行走13米至点A处,再沿正南方向行走14米至点B处,最后沿正东方向行走至点C处,点B、C都在圆O上.
(1)求弦BC的长;
(2)求圆O的半径长.
(本题参考数据:sin 67.4° =,cos 67.4°=,tan 67.4° =

如图,在ABCD中,点E在边BC上,点F在BC的延长线上,且BE=CF。求证:∠BAE=∠CDF

(1)解方程:
(2)解不等式组

如图,在平面直角坐标系xOy中,已知直线PA是一次函数y=x+m(m>0)的图象,直线PB是一次函数y=-3x+n(n>m)的图象,点P是两直线的交点,点A、B、C、Q分别是两条直线与坐标轴的交点.
(1)用m、n分别表示点A、B、P的坐标及∠PAB的度数;
(2)若四边形PQOB的面积是4,且CQ:AO=2:1,试求点P的坐标,并求出直线PA与PB的函数表达式;
(3)在(2)的条件下,是否存在一点D,使以A、B、P、D为顶点的四边形是平行四边形?若存在,求出点D的坐标;若不存在,请说明理由.

如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△,连结.若∠ACB=30°,AB=2,=x,四边形的面积为S.
(1)线段的长度最小值是_____,此时x=" _____"
(2)当x为何时,四边形是菱形?并说明理由;
(3)求S与x的函数关系式,并在直角坐标系中画出这个函数的图象

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号