已知:如图,DABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.
(1)求证:AP=PD;
(2)请判断A,D,F三点是否在以P为圆心,以PD为半径的圆上?并说明理由;
(3)连接CD,若CD﹦3,BD ﹦4,求⊙O的半径和DE的长.
如图,在⊙O中,∠ACB=∠BDC=60°,AC=,
(1)判断△ABC的形状并证明你的结论;
(2)求⊙O的周长
在平面直角坐标系中,△ABC的顶点坐标是A(-7,1),B(1,1),C(1,7).线段DE的端点坐标是D(7,-1),E(-1,-7).
(1)试说明如何平移线段AC,使其与线段ED重合;
(2)将△ABC绕坐标原点O逆时针旋转,使AC的对应边为DE,请直接写出点B的对应点F的坐标;
(3)画出(2)中的△DEF,并和△ABC同时绕坐标原点O逆时针旋转90°,画出旋转后的图形.
如图所示,在一块长为32米,宽为15米的矩形草地上,在中间要设计一横二竖的供居民散步的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少米?(注:所有小路进出口的宽度相等,且每段小路均为平行四边形)
我们知道:对于任何实数,①∵
≥0,∴
+1>0;②∵
≥0,∴
+
>0.
模仿上述方法解答:
求证:(1)对于任何实数,均有:
>0;
(2)不论为何实数,多项式
的值总大于
的值.