在平面直角坐标系中(如图).已知抛物线经过点和点,顶点为,点在其对称轴上且位于点下方,将线段绕点按顺时针方向旋转,点落在抛物线上的点处.
(1)求这条抛物线的表达式;
(2)求线段的长;
(3)将抛物线平移,使其顶点移到原点的位置,这时点落在点的位置,如果点在轴上,且以、、、为顶点的四边形面积为8,求点的坐标.
已知在四边形ABCD中,(1)求
的长;
(2)求
的长.
已知抛物线y=ax+bx+c与
轴交于
两点,若
两点的横坐标分别是一元二次方程
的两个实数根,与
轴交于点
(0,3),
(1)求抛物线的解析式;
(2)在此抛物线上求点
,使
.
今年北京市大规模加固中小学校舍,房山某中学教学楼的后面靠近一座山坡,坡面上是一块平地,如图所示.,斜坡
米,坡度i=
,为防止山体滑坡,保障学生安全,学校决定不仅加固教学楼,还对山坡进行改造.经地质人员勘测,当坡角不超过
时,可确保山体不滑坡,改造时保持坡脚
不动,从坡顶
沿
削进到
处,问
至少是多少米.(结果保留根号)
如图,在半径为r的半圆⊙O中,半径OA⊥直径BC,点E、F分别在弦AB、AC上滑动并保持AE=CF,但点F不与A、C重合,点E不与A、B重合.(1)求证 S四边形AEOF=
;
(2)设AE=x,S△OEF=y,写出y与x之间的函数关系式及自变量x的范围;
(3)当S△OEF =
S△ABC时,求点E、F分别在AB、AC上的位置及EF的长。
(8分)如图,在平面直角坐标系中,以点为圆心,以2为半径作圆,交
轴于
两点,开口向下的抛物线经过点
,且其顶点
在⊙C上.
![]() |
(1)求
的大小;
(2)写出A、B两点的坐标;
(3)试确定此抛物线的解析式;
(4)在该抛物线上是否存在一点
,使线段
与
互相平分?若存在,求出点
的坐标;若不存在,请说明理由.