已知二次函数图象的顶点坐标为,该二次函数图象的对称轴与轴的交点为,是这个二次函数图象上的点,是原点.
(1)不等式是否成立?请说明理由;
(2)设是的面积,求满足的所有点的坐标.
如图,将正方形ABCD中的△ABD绕对称中心O旋转至△GEF的位置,EF交AB于M,GF交BD于N.请猜想BM与FN有怎样的数量关系?并证明你的结论.
先化简,再求值:÷(1+
),其中a=5-
,b=-3+
解方程: (1)、 (2)、
已知:在梯形ABCD中,CD∥AB,AD=DC=BC=2,AB=4.点M从A开始,以每秒1个单位的速度向点B运动;点N从点C出发,沿C→D→A方向,以每秒1个单位的速度向点A运动,若M、N同时出发,其中一点到达终点时,另一个点也停止运动.运动时间为t秒,过点N作NQ⊥CD交AC于点Q.
(1)设△AMQ的面积为S,求S与t的函数关系式,并写出t的取值范围.
(2)在梯形ABCD的对称轴上是否存在点P,使△PAD为直角三角形?若存在,求点P到AB的距离;若不存在,说明理由.
(3)在点M、N运动过程中,是否存在t值,使△AMQ为等腰三角形?若存在,求出t值;若不存在,说明理由.
我区某房地产开发公司于2013年5月份完工一商品房小区,6月初开始销售,其中6月的销售单价为0.7万元/m2,7月的销售单价为0.72万元/m2,且每月销售价格(单位:
)与月份x(6≤x≤11,x为整数)之间满足一次函数关系,每月的销售面积为
(单位:
),其中y2=-2000x+26000(6≤x≤11,x为整数).
(1)求与月份
的函数关系式;
(2)6~11月中,哪一个月的销售额最高?最高销售额为多少万元?
(3)2013年11月时,因受某些因素影响,该公司销售部预计12月份的销售面积会在11月销售面积基础上减少,于是决定将12月份的销售价格在11月的基础上增加
,该计划顺利完成.为了尽快收回资金,2014年1月公司进行降价促销,该月销售额为(1500+600a)万元.这样12月、1月的销售额共为
万元,请根据以上条件求出
的值为多少?