攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚熟芒果远销北上广等大城市.某水果店购进一批优质晚熟芒果,进价为10元千克,售价不低于15元千克,且不超过40元千克.根据销售情况,发现该芒果在一天内的销售量(千克)与该天的售价(元千克)之间的数量满足如下表所示的一次函数关系.
销售量(千克) |
32.5 |
35 |
35.5 |
38 |
||
售价(元千克) |
27.5 |
25 |
24.5 |
22 |
(1)某天这种芒果的售价为28元千克,求当天该芒果的销售量.
(2)设某天销售这种芒果获利元,写出与售价之间的函数关系式,如果水果店该天获利400元,那么这天芒果的售价为多少元?
如图,在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10.点E在下底边BC上,点F在腰AB上.
(1)若EF平分等腰梯形ABCD的周长,设BE长为,试用含
的代数式表示△BEF的面积;
(2)是否存在线段EF将等腰梯形ABCD的周长和面积同时平分?若存在,求出此BE的长;若不存在,请说明理由;
(3)是否存在线段EF将等腰梯形ABCD的周长和面积同时分成1︰2的两部分?若存在,求此时BE的长;若不存在,请说明理由.
如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆与斜边AB交于点E,连接DE.
(1)判断线段AC与AE是否相等,并说明理由;
(2)求过A、C、D三点的圆的直径.
某批发商以每件50元的价格购进800件T恤.第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓,清仓时单价为40元.设第二个月单价降低元.
(1)填表:
时间 |
第一个月 |
第二个月 |
清仓 |
单价(元) |
80 |
40 |
|
销售量(件) |
200 |
(2)如果批发商希望通过销售这批T恤获利9 000元,那么第二个月的单价应是多少元?
已知:a、b、c满足
求:(1)a、b、c的值;
(2)试问以a、b、c为边能否构成三角形?若能构成三角形,求出三角形的周长;
若不能构成三角形,请说明理由.
如图,在△ABC中,点D、E、F分别在BC、AB、AC边上,且DE∥AC,DF∥AB.
(1)如果∠BAC=90°,那么四边形AEDF是形;
(2)如果AD是△ABC的角平分线,那么四边形AEDF是形;
(3)如果∠BAC=90°,AD是△ABC的角平分线,那么四边形AEDF是形,证明你的结论(仅需证明第⑶题结论).