游客
题文

如图1,抛物线C:y=ax2+bx经过点A(-4,0)B(-1,3)两点,G是其顶点,将抛物线C绕点O旋转180°,得到新的抛物线C'

(1)求抛物线C的函数解析式及顶点G的坐标;

(2)如图2,直线l:y=kx-125经过点AD是抛物线C上的一点,设D点的横坐标为m(m<-2),连接DO并延长,交抛物线C'于点E,交直线l于点M,若DE=2EM,求m的值;

(3)如图3,在(2)的条件下,连接AGAB,在直线DE下方的抛物线C上是否存在点P,使得DEP=GAB?若存在,求出点P的横坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数的性质 二次函数图象与几何变换 解直角三角形 待定系数法求二次函数解析式 相似三角形的判定与性质
登录免费查看答案和解析
相关试题

为庆祝建党100周年,某大学组织志愿者周末到社区进行党史学习宣讲,决定从 A B C D 四名志愿者中通过抽签的方式确定两名志愿者参加.抽签规则:将四名志愿者的名字分别写在四张完全相同不透明卡片的正面,把四张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字.

(1)“ A 志愿者被选中”是  事件(填“随机”或“不可能”或“必然” )

(2)请你用列表法或画树状图法表示出这次抽签所有可能的结果,并求出 A B 两名志愿者被选中的概率.

解不等式组: 2 x - 3 1 x + 1 3 > - 1 并将解集在数轴上表示出来.

(1)计算: ( - 1 ) 2 - ( π - 2021 ) 0 + | - 1 2 |

(2)如图,在 ΔABC 中, A = 40 ° ABC = 80 ° BE 平分 ABC AC 于点 E ED AB 于点 D ,求证: AD = BD

甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:

甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出.如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车.另外,公司为每辆租出的汽车支付月维护费200元.

乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元.

说明:①汽车数量为整数;②月利润 = 月租车费 - 月维护费;③两公司月利润差 = 月利润较高公司的利润 - 月利润较低公司的利润.

在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:

(1)当每个公司租出的汽车为10辆时,甲公司的月利润是   48000  元;当每个公司租出的汽车为   辆时,两公司的月利润相等;

(2)求两公司月利润差的最大值;

(3)甲公司热心公益事业,每租出1辆汽车捐出 a ( a > 0 ) 给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求 a 的取值范围.

在一次数学探究活动中,李老师设计了一份活动单:

已知线段 BC = 2 ,使用作图工具作 BAC = 30 ° ,尝试操作后思考:

(1)这样的点 A 唯一吗?

(2)点 A 的位置有什么特征?你有什么感悟?

“追梦”学习小组通过操作、观察、讨论后汇报:点 A 的位置不唯一,它在以 BC 为弦的圆弧上(点 B C 除外), .小华同学画出了符合要求的一条圆弧(如图 1 )

(1)小华同学提出了下列问题,请你帮助解决.

①该弧所在圆的半径长为   

ΔABC 面积的最大值为   

(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为 A ' ,请你根据图1证明 BA ' C > 30 °

(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形 ABCD 的边长 AB = 2 BC = 3 ,点 P 在直线 CD 的左侧,且 tan DPC = 4 3

①线段 PB 长的最小值为   

②若 S ΔPCD = 2 3 S ΔPAD ,则线段 PD 长为   

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号