已知抛物线的对称轴是直线,与轴相交于,两点(点在点右侧),与轴交于点.
(1)求抛物线的解析式和,两点的坐标;
(2)如图1,若点是抛物线上、两点之间的一个动点(不与、重合),是否存在点,使四边形的面积最大?若存在,求点的坐标及四边形面积的最大值;若不存在,请说明理由;
(3)如图2,若点是抛物线上任意一点,过点作轴的平行线,交直线于点,当时,求点的坐标.
已知△ABC,求作△DEF,使△DEF≌△ABC(尺规作图,保留作图痕迹)。
作法:
如图15,已知∠1=∠2,∠3=∠4,EC=AD求证:⊿ABD≌⊿EBC.
你可以从中得出哪些结论?请写出两个
已知:如图,M是线段BC的中点,BC=4,分别以MB、MC为边在线段BC的同侧作等边△BAM、等边△MCD,连接AD求证:四边形ABCD是等腰梯形
将△MDC绕点M逆时针方向旋转α(60º<α<120º),得到△MD´C´,MD´交AB于点E,MC´交AD于点F,连接EF.
①求证:EF∥D´C´;
②△AEF的周长是否存在最小值?如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.
如图所示,在直角坐标平面内,函数的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连结AD、DC、CB.若△ABD的面积为4,求点B的坐标
求证:DC∥AB
四边形ABCD能否为菱形?如果能,请求出四边形ABCD 为菱形时,直线AB的函数解析式;如果不能,请说明理由.
某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.根据下表提供的信息,解答以下问题:
土特产种类 |
甲 |
乙 |
丙 |
每辆汽车运载量(吨) |
8 |
6 |
5 |
每吨土特产获利(百元) |
12 |
16 |
10 |
设装运甲种土特产的车辆数为
,装运乙种土特产的车辆数为
,求
与
之间的函数关系式
如果装运每种土特产的车辆都不少于3辆,那么车辆的安排方案有几种?并写出每种安排方案.
若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值