游客
题文

古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”.请研究如下美丽的圆.如图,线段ABO的直径,延长AB至点C,使BC=OB,点E是线段OB的中点,DEABO于点D,点PO上一动点(不与点AB重合),连接CDPEPC

(1)求证:CDO的切线;

(2)小明在研究的过程中发现PEPC是一个确定的值.回答这个确定的值是多少?并对小明发现的结论加以证明.

科目 数学   题型 解答题   难度 中等
知识点: 相似三角形的判定与性质 切线的判定与性质
登录免费查看答案和解析
相关试题

阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:将方程②变形:4x+10y+y="5" 即2(2x+5y)+y=5③
把方程①带入③得:2×3+y=5,∴y=﹣1
把y=﹣1代入①得x=4,∴方程组的解为
请你解决以下问题:(1)模仿小军的“整体代换”法解方程组
(2)已知x,y满足方程组
(i)求的值;
(ii)求的值.

如图,四边形OMTN中,OM=ON,TM=TN,我们把这种两组邻边分别相等的四边形叫做筝形.

(1)试探究筝形对角线之间的位置关系,并证明你的结论;
(2)在筝形ABCD中,已知AB=AD=5,BC=CD,BC>AB,BD,AC为对角线,BD=8.
①是否存在一个圆使得A,B,C,D四个点都在这个圆上?若存在,求出圆的半径;若不存在, 请说明理由;
②过点B作BF⊥CD,垂足为F,BF交AC于点E,连接DE.当四边形ABED为菱形时,求点F到AB 的距离.

某校为了丰富学生的第二课堂,对学生参与演讲、舞蹈、书法和摄影活动的兴趣情况进行调查,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中最感兴趣的一项),对调查结果进行统计后,绘制了如下两个统计图:

(1)此次调查抽取的学生人数m= 名,其中选择“书法”的学生占抽样人数的百分比n=
(2)若该校有3000名学生,请根据以上数据估计该校对“书法”最感兴趣的学生人数.

如图,△ABC是等腰三角形,AB=AC,请你用尺规作图将△ABC分成两个全等的三角形,并说明这两个三角形全等的理由.(保留作图痕迹,不写作法)

如图,在平行四边形ABCD中,AB<BC.

(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);
(2)若BC=8,CD=5,则CE=

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号