某商场准备购进、两种型号电脑,每台型号电脑进价比每台型号电脑多500元,用40000元购进型号电脑的数量与用30000元购进型号电脑的数量相同,请解答下列问题:
(1),型号电脑每台进价各是多少元?
(2)若每台型号电脑售价为2500元,每台型号电脑售价为1800元,商场决定同时购进,两种型号电脑20台,且全部售出,请写出所获的利润(单位:元)与型号电脑(单位:台)的函数关系式,若商场用不超过36000元购进,两种型号电脑,型号电脑至少购进10台,则有几种购买方案?
(3)在(2)问的条件下,将不超过所获得的最大利润再次购买,两种型号电脑捐赠给某个福利院,请直接写出捐赠,型号电脑总数最多是多少台.
车间有20名工人,某一天他们生产的零件个数统计如下表.
车间20名工人某一天生产的零件个数统计表
生产零件的个数(个 |
9 |
10 |
11 |
12 |
13 |
15 |
16 |
19 |
20 |
工人人数(人 |
1 |
1 |
6 |
4 |
2 |
2 |
2 |
1 |
1 |
(1)求这一天20名工人生产零件的平均个数.
(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?
如图,在 中, 是 边上的中线, 是 边上一点,过点 作 交 的延长线于点 .
(1)求证: .
(2)当 , , 时,求 的长.
计算:
(1) .
(2) .
如图,正方形 的边长为2, 为 的中点, 是 延长线上的一点,连接 交 于点 , .
(1)求 的值;
(2)如图1,连接 ,在线段 上取一点 ,使 ,连接 ,求证: ;
(3)如图2,过点 作 于点 ,在线段 上取一点 ,使 ,连接 , .将 绕点 旋转,使点 旋转后的对应点 落在边 上.请判断点 旋转后的对应点 是否落在线段 上,并说明理由.
已知函数 , 为常数)的图象经过点 .
(1)求 , 满足的关系式;
(2)设该函数图象的顶点坐标是 ,当 的值变化时,求 关于 的函数解析式;
(3)若该函数的图象不经过第三象限,当 时,函数的最大值与最小值之差为16,求 的值.