遵义市各校都在深入开展劳动教育,某校为了解七年级学生一学期参加课外劳动时间(单位: 的情况,从该校七年级随机抽查了部分学生进行问卷调查,并将调查结果绘制成如下不完整的频数分布表和频数分布直方图.
课外劳动时间频数分布表:
劳动时间分组 |
频数 |
频率 |
|
2 |
0.1 |
|
4 |
|
|
6 |
0.3 |
|
|
0.25 |
|
3 |
0.15 |
解答下列问题:
(1)频数分布表中 , ;将频数分布直方图补充完整;
(2)若七年级共有学生400人,试估计该校七年级学生一学期课外劳动时间不少于 的人数;
(3)已知课外劳动时间在 的男生人数为2人,其余为女生,现从该组中任选2人代表学校参加"全市中学生劳动体验"演讲比赛,请用树状图或列表法求所选学生为1男1女的概率.
如图,以线段AB为直径作⊙O,CD与⊙O相切于点E,交AB的延长线于点D, 连接BE,过点O作OC∥BE交切线DE于点C,连接AC .
(1)求证:AC是⊙O的切线 ;
(2)若BD=OB=4,求弦AE的长.
在平面直角坐标系xoy中,直线y="-x+3" 与x轴、y轴分别交于A、B,在△AOB内部作正方形,使正方形的四个顶点都落在该三角形的边上,求正方形落在x轴正半轴的顶点坐标。
先化简,再求值.,其中 x=tan600+2 .
如图,矩形ABOD的两边OB,OD都在坐标轴的正半轴上,OD=3,另两边与反比例函数(k≠0)的图象分别相交于点E、F,且DE=2.过点E作EH⊥x轴于点H,过点F作FG⊥EH于点G.回答下面的问题:
(1)①求反比例函数的解析式.
②当四边形AEGF为正方形时,求点F的坐标.
(2)小亮进一步研究四边形AEGF的特征后提出问题:“当AE>EG时,矩形AEGF与矩形DOHE能否全等?能否相似?”
针对小亮提出的问题,请你判断这两个矩形能否全等(直接写出结论即可).这两个矩形能否相似?若能相似,求出相似比;若不能相似,试说明理由.
如图,在△ABC中,D是BC边上的点(不与点B,C重合),连接AD.
问题引入:
(1)如图①,当点D是BC边上的中点时,S△ABD︰S△ABC=________;当点D是BC边上任意一点时,S△ABD︰S△ABC=________(用图中已有线段表示).
探索研究:
(2)如图②,在△ABC中,O点是线段AD上的一点(不与点A,D重合),连接BO,CO,试猜想S△BOC与S△ABC之比应该等于图中哪两条线段之比,并说明理由.
拓展应用:
(3)如图③,O是线段AD上一点(不与点A,D重合),连接BO并延长交AC于点F,连接CO并延长交AB于点E,试猜想的值,并说明理由.