鄂州市某校数学兴趣小组借助无人机测量一条河流的宽度.如图所示,一架水平飞行的无人机在处测得正前方河流的左岸处的俯角为,无人机沿水平线方向继续飞行50米至处,测得正前方河流右岸处的俯角为.线段的长为无人机距地面的铅直高度,点、、在同一条直线上.其中,米.
(1)求无人机的飞行高度;(结果保留根号)
(2)求河流的宽度.(结果精确到1米,参考数据:,
下图是某班学生外出乘车、步行、骑车的人数分布直方图和扇形分布图
(1)求该班有多少名学生?
(2)补上步行分布直方图的空缺部分;
(3)在扇形统计图中,求骑车人数所占的圆心角度数。
(4)若全年级有500人,估计该年级步行人数
大楼AD的高为10米,远处有一塔BC,某人在楼底A处测得踏顶B处的仰角为60º,爬到楼顶D点测得塔顶B点的仰角为30º,求塔BC的高度
先化简,再求值:()÷
,其中x=2005
如图10,以点M(-1,0)为圆心的圆与y轴、x轴分别交于点A、B、C、D,直线y=- x- 与⊙M相切于点H,交x轴于点E,交y轴于点F.
(1)请直接写出OE、⊙M的半径r、CH的长;
(2)如图11,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;
(3)如图12,点K为线段EC上一动点(不与E、C重合),连接BK交⊙M于点T,弦AT交x轴于点N.是否存在一个常数a,始终满足MN·MK=a,如果存在,请求出a的值;如果不存在,请说明理由.
如图9,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(-2,0),B(-1, -3).
(1)求抛物线的解析式;
(2)点M为y轴上任意一点,当点M到A、B两点的距离之和为最小时,求此时点M的坐标;
(3)在第(2)问的结论下,抛物线上的点P使S△PAD=4S△ABM成立,求点P坐标.