"通过等价变换,化陌生为熟悉,化未知为已知"是数学学习中解决问题的基本思维方式,例如:解方程 ,就可以利用该思维方式,设 ,将原方程转化为: 这个熟悉的关于 的一元二次方程,解出 ,再求 ,这种方法又叫"换元法".请你用这种思维方式和换元法解决下面的问题.
已知实数 , 满足 ,求 的值.
如图,学校打算用材料围建一个面积为18平方米的矩形ABCD的生物园,用来饲养小兔,其中矩形ABCD的一边AB靠墙,墙长为8米,设AD的长为y米, CD的长为x米.
(1)求y与x之间的函数表达式;
(2)若围成矩形ABCD的生物园的三边材料总长不超过18米,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.
如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD、CE,两线交于点F.(1)求证:△ABD≌△ACE;(2)求证:四边形ABFE是菱形.
某校全体学生积极参加校团委组织的“献爱心捐款”活动,为了解捐款情况,随机抽取了部分学生并对他们的捐款情况作了统计,绘制了两幅不完整的统计图(统计图中每组含最小值,不含最大值).请依据图中信息解答下列问题:
(1)求随机抽取的学生人数.
(2)填空:(直接填答案)①“20元~25元”部分对应的圆心角度数为______.②捐款的中位数落在______(填金额范围) .
(3)若该校共有学生3500人,请估算全校捐款不少于20元的人数.
在一个不透明的袋中装有3 个完全相同的小球,上面分别标号为1、2、3,从中随机摸出两个小球,并用球上的数字组成一个两位数.
(1)求组成的两位数是奇数的概率;
(2)小明和小华做游戏,规则是:若组成的两位数是4的倍数,小明得3分,否则小华得3分,你认为该游戏公平吗?说明理由;若不公平,请修改游戏规则,使游戏公平.
先化简,然后在0<2m-1<6的范围内选取一个合适的整数作为m的值代入求值.