游客
题文

在平面直角坐标系 xOy中,抛物线 yax 2+ bx+ cy轴交于点 C,其顶点记为 M,自变量 x=﹣1和 x=5对应的函数值相等.若点 M在直线 ly=﹣12 x+16上,点(3,﹣4)在抛物线上.

(1)求该抛物线的解析式;

(2)设 yax 2+ bx+ c对称轴右侧 x轴上方的图象上任一点为 P,在 x轴上有一点 A(﹣ 7 2 ,0),试比较锐角∠ PCO与∠ ACO的大小(不必证明),并写出相应的 P点横坐标 x的取值范围.

(3)直线 l与抛物线另一交点记为 BQ为线段 BM上一动点(点 Q不与 M重合).设 Q点坐标为( tn),过 QQHx轴于点 H,将以点 QHOC为顶点的四边形的面积 S表示为 t的函数,标出自变量 t的取值范围,并求出 S可能取得的最大值.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数的性质 待定系数法求二次函数解析式 二次函数综合题
登录免费查看答案和解析
相关试题

(本小题满分7分)
(1)计算:
(2)解不等式组

如图,∠C=90°,点A、B在∠C的两边上,CA=30,CB=20,连结AB.点P从点B出发,以每秒4个单位长度的速度沿BC方向运动,到点C停止.当点P与B、C两点不重合时,作PD⊥BC交AB于D,作DE⊥AC于E.F为射线CB上一点,
且∠CEF=∠ABC.设点P的运动时间为x(秒).

(1)用含有x的代数式表示CE的长;
(2)求点F与点B重合时x的值;
(3)当点F在线段CB上时,设四边形DECP与四边形DEFB重叠部分图形的面积为y(平方单位).求y与x之间的函数关系式;
(4)当x为某个值时,沿PD将以D、E、F、B为顶点的四边形剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的x值.

如图1,抛物线),与轴的交于A、B两点(点
A在点B的右侧),与轴的正半轴交于点C,顶点为D.
(1)求顶点D的坐标(用含的代数式表示);
(2)若以AD为直径的圆经过点C.

① 求抛物线的解析式;
② 如图2,点E是y轴负半轴上的一点,连结BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;
③ 点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.

图1为一锐角是30°的直角三角尺,其边框为透明塑料制成(内、外直角三角形对应边互相平行且三处所示宽度相等).
操作:将三角尺移向直径为4cm的⊙O,它的内Rt△ABC的斜边AB恰好等于⊙O的直径,它的外Rt△A′B′C′的直角边A′C′ 恰好与⊙O相切(如图2).

思考:
(1)求直角三角尺边框的宽;
(2)求BB′C′+CC′B′的度数;
(3)求边B′C′的长.

2015年4月25日14时11分尼泊尔发生了8.1级大地震.山坡上有一棵与水平面垂直的大树,大地震过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示).已知山坡的坡角∠AEF=23°,量得树干的倾斜角为∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=4米.

(1)求∠DAC的度数;
(2)求这棵大树原来的高度是多少米?(结果精确到个位,参考数据:

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号