如图,AB是⊙O的弦,点C为半径OA的中点,过点C作 交弦AB于点E,连接BD,且 .
(1)判断BD与⊙O的位置关系,并说明理由;
(2)若 , ,求⊙O的直径.
如图,正方形ABCD的边长为8cm,E、F、G、H分别是AB、BC、CD、DA 上的动点,且AE=BF=CG=DH.
(1)求证:四边形EFGH是正方形;
(2)判断直线EG是否经过一个定点,并说明理由;
(3)求四边形EFGH面积的最小值。
如图,△ABC 中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F。
(1)试说明DF是⊙O的切线;
(2)若 AC=3AE,求。
如图,某仓储中心有一斜坡AB,其坡度为,顶部A处的高AC为4m,B、C在同一水平地面上。
(1)求斜坡AB的水平宽度BC;
(2)矩形DEFG为长方形货柜的侧面图,其中DE=2.5m,EF=2m.将该货柜沿斜坡向上运送,当BF=3.5m时,求点D离地面的高。(,结果精确到0.1m)
已知二次函数的图像经过点
,对称轴是经过
且平行于
轴的直线。
(1)求、
的值
(2)如图,一次函数的图像经过点
,与
轴相交于点
,与二次函数的图像相交于另一点B,点B在点P的右侧,
, 求一次函数的表达式。
某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件, 并以每件120元的价格销售了400件.商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?