阅读理解:
我们知道,四边形具有不稳定性,容易变形,如图1,一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把 的值叫做这个平行四边形的变形度.
(1)若矩形发生变形后的平行四边形有一个内角是120度,则这个平行四边形的变形度是 .
猜想证明:
(2)设矩形的面积为S1,其变形后的平行四边形面积为S2,试猜想S1,S2, 之间的数量关系,并说明理由;
拓展探究:
(3)如图2,在矩形ABCD中,E是AD边上的一点,且 ,这个矩形发生变形后为平行四边形A1B1C1D1,E1为E的对应点,连接B1E1,B1D1,若矩形ABCD的面积为 ,平行四边形A1B1C1D1的面积为 ,试求∠A1E1B1+∠A1D1B1的度数.
如图,在平面直角坐标系中,抛物线 与 轴交于 , 两点,点 ,经过点 的直线 与抛物线的另一交点为 ,与 轴交点为 ,点 是直线 下方的抛物线上的一个动点(不与点 , 重合).
(1)求该抛物线的解析式.
(2)过点 作 ,垂足为点 ,作 轴交直线 于点 ,设点 的横坐标为 ,线段 的长度为 ,求 与 的函数关系式.
(3)点 在抛物线的对称轴上运动,当 是以 为直角边的等腰直角三角形时,请直接写出符合条件的点 的坐标.
中, , ,过点 作直线 ,使 ,点 在直线 上,作射线 ,将射线 绕点 顺时针旋转角 后交直线 于点 .
(1)如图①,当 ,且点 在射线 上时,直接写出线段 , , 的数量关系.
(2)如图②,当 ,且点 在射线 上时,直写出线段 、 、 的数量关系,并说明理由.
(3)当 时,若点 在射线 上, , ,请直接写出线段 的长度.
如图1,一种折叠式小刀由刀片和刀鞘两部分组成.现将小刀打开成如图2位置,刀片部分是四边形 ,其中 , , , ,刀鞘的边缘 ,刀刃 与刀鞘边缘 相交于点 ,点 恰好落在刀鞘另一边缘 上时, , ,
(1)求刀片宽度 .
(2)若刀鞘宽度为 ,求刀刃 的长度.(结果精确到 (参考数据: , ,
近年来随着人们生活方式的改变,租车出行成为一种新选择,本溪某租车公司根据去年运营经验得出:每天租车的车辆数 (辆 与每辆车每天的租金 (元 满足关系式 ,且 为50的整数倍),公司需要为每辆租出的车每天支出各种费用共200元,设租车公司每天的利润为 元.
(1)求 与 的函数关系式.(利润 租金 支出)
(2)公司在“十一黄金周”的前3天每天都获得了最大利润,但是后4天执行了物价局的新规定:每辆车每天的租金不超过800元.请确定这7天公司获得的总利润最多为多少元?
如图, 内接于 , 的边 是 的直径,且 ,连接 .
(1)求证: 是 的切线.
(2)若 , ,求 与弦 围成的阴影部分的面积.