赤峰市某中学为庆祝"世界读书日",响应"书香校园"的号召,开展了"阅读伴我成长"的读书活动.为了解学生在此次活动中的读书情况,从全校学生中随机抽取一部分学生进行调查,将收集到的数据整理并绘制成如图所示不完整的折线统计图和扇形统计图.
(1)随机抽取学生共 名,2本所在扇形的圆心角度数是 度,并补全折线统计图;
(2)根据调查情况,学校决定在读书数量为1本和4本的学生中任选两名学生进行交流,请用树状图或列表法求这两名学生读书数量均为4本的概率.
某岛是我国南海上的一个岛屿,小明据此构造出该岛的一个数学模型如图甲所示,其中∠B=90°,AB=100千米,∠BAC=30°,请据此解答如下问题:
(1)求该岛的周长和面积(结果保留整数,参考数据≈1.414,
≈1.73,
≈2.45);
(2)国家为了建设的需要,在原有岛屿基础上沿海岸线AC向海洋填海,扩充岛屿的面积(如图乙),填成一个以AC为直径的半圆,点D在这个半圆上,求当△ACD的面积最大时,△ACD另外两条边的边长.
如图所示,折线AOB可以看成是函数y=|x|(﹣1≤x≤1)的图象.
(1)将折线AOB向右平移4个单位,得到折线A1O1B1,画出折线A1O1B1;
(2)直接写出折线A1O1B1的表达式.
先化简,再求值:(﹣
)÷
,其中x=
.
如图,已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=﹣
x+b和y=x的图象于点C、D.
(1)求点A的坐标;
(2)若OB=CD,求a的值.
现从A,B向甲、乙两地运送蔬菜,A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨.
(1)设A地到甲地运送蔬菜x吨,请完成下表:
运往甲地(单位:吨) |
运往乙地(单位:吨) |
|
A |
x |
|
B |
(2)设总运费为W元,请写出W与x的函数关系式.
(3)怎样调运蔬菜才能使运费最少?