某书店在"读书节"之前,图书按标价销售,在"读书节"期间制定了活动计划.
(1)"读书节"之前小明发现:购买5本 A图书和8本 B图书共花279元,购买10本 A图书比购买6本 B图书多花162元,请求出 A、 B图书的标价;
(2)"读书节"期间书店计划用不超过3680元购进 A、 B图书共200本,且 A图书不少于50本, A、 B两种图书进价分别为24元、16元;销售时准备 A图书每本降价1.5元, B图书价格不变,那么书店如何进货才能使利润最大?
成都“339”电视塔作为成都市地标性建筑之一,现已成为外地游客到成都旅游打卡的网红地.如图,为测量电视塔观景台 处的高度,某数学兴趣小组在电视塔附近一建筑物楼项 处测得塔 处的仰角为 ,塔底部 处的俯角为 .已知建筑物的高 约为61米,请计算观景台的高 的值.
(结果精确到1米;参考数据: , ,
2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会.目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如下两幅不完整的统计图.
根据以上信息,解答下列问题:
(1)这次被调查的同学共有 人;
(2)扇形统计图中“篮球”对应的扇形圆心角的度数为 ;
(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.
先化简,再求值: ,其中 .
(1)计算: ;
(2)解不等式组: .
如图,已知抛物线 过点 , , ,其顶点为 .
(1)求抛物线的解析式;
(2)设点 ,当 的值最小时,求 的值;
(3)若 是抛物线上位于直线 上方的一个动点,求 的面积的最大值;
(4)若抛物线的对称轴与直线 相交于点 , 为直线 上任意一点,过点 作 交抛物线于点 ,以 , , , 为顶点的四边形能否为平行四边形?若能,求点 的坐标;若不能,请说明理由.