游客
题文

如图①,在△ABC中, ACB 90 ° B 30 ° AC 1 DAB的中点,EF为△ACD的中位线,四边形EFGH为△ACD的内接矩形(矩形的四个顶点均在△ACD的边上).

(1)计算矩形EFGH的面积;

(2)将矩形EFGH沿AB向右平移,F落在BC上时停止移动.在平移过程中,当矩形与△CBD重叠部分的面积为 3 16 时,求矩形平移的距离;

(3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形E1F1G1H1,将矩形E1F1G1H1G1点按顺时针方向旋转,当H1落在CD上时停止转动,旋转后的矩形记为矩形E2F2G1H2,设旋转角为α,求cosα的值.

科目 数学   题型 解答题   难度 较难
知识点: 平移的性质 旋转的性质 解直角三角形 矩形的性质 几何变换综合题
登录免费查看答案和解析
相关试题

如图,在 ABCD 中,点 E AB 的延长线上,点 F CD 的延长线上,满足 BE = DF .连接 EF ,分别与 BC AD 交于点 G H

求证: EG = FH

计算: - 8 3 + | 3 - 1 | - 2 sin 60 ° + ( 1 4 ) 0

如图,直线 y = - 1 2 x + 2 y 轴于点 A ,交 x 轴于点 C ,抛物线 y = - 1 4 x 2 + bx + c 经过点 A ,点 C ,且交 x 轴于另一点 B

(1)直接写出点 A ,点 B ,点 C 的坐标及拋物线的解析式;

(2)在直线 AC 上方的抛物线上有一点 M ,求四边形 ABCM 面积的最大值及此时点 M 的坐标;

(3)将线段 OA x 轴上的动点 P ( m , 0 ) 顺时针旋转 90 ° 得到线段 O ' A ' ,若线段 O ' A ' 与抛物线只有一个公共点,请结合函数图象,求 m 的取值范围.

ΔABC 中, BAC = = 90 ° AB = AC ,点 D 在边 BC 上, DE DA DE = DA AE 交边 BC 于点 F ,连接 CE

(1)特例发现:如图1,当 AD = AF 时,

①求证: BD = CF

②推断: ACE =     °

(2)探究证明:如图2,当 AD AF 时,请探究 ACE 的度数是否为定值,并说明理由;

(3)拓展运用:如图3,在(2)的条件下,当 EF AF = 1 3 时,过点 D AE 的垂线,交 AE 于点 P ,交 AC 于点 K ,若 CK = 16 3 ,求 DF 的长.

受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售."一方有难,八方支援"某水果经销商主动从该种植专业户购进甲,乙两种水果进行销售.专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按25元 / 千克的价格出售.设经销商购进甲种水果 x 千克,付款 y 元, y x 之间的函数关系如图所示.

(1)直接写出当 0 x 50 x > 50 时, y x 之间的函数关系式;

(2)若经销商计划一次性购进甲,乙两种水果共100千克,且甲种水果不少于40千克,但又不超过60千克.如何分配甲,乙两种水果的购进量,才能使经销商付款总金额 w (元 ) 最少?

(3)若甲,乙两种水果的销售价格分别为40元 / 千克和36元 / 千克.经销商按(2)中甲,乙两种水果购进量的分配比例购进两种水果共 a 千克,且销售完 a 千克水果获得的利润不少于1650元,求 a 的最小值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号