如图1,在平面直角坐标系中,已知抛物线 与 轴交于 , 两点,与 轴交于点 .
(1)求抛物线的函数表达式;
(2)若点 是 轴上的一点,且以 , , 为顶点的三角形与 相似,求点 的坐标;
(3)如图2, 轴与抛物线相交于点 ,点 是直线 下方抛物线上的动点,过点 且与 轴平行的直线与 , 分别相交于点 , ,试探究当点 运动到何处时,四边形 的面积最大,求点 的坐标及最大面积;
(4)若点 为抛物线的顶点,点 是该抛物线上的一点,在 轴, 轴上分别找点 , ,使四边形 的周长最小,求出点 , 的坐标.
如图,将三角形ABC绕点O旋转得到三角形A/B/C/,且∠AOB=300,∠AOB/=200,则
(1)点B的对应点是________________;
(2)线段OB的对应线段是____________;
(3)∠AOB的对应角是________________;
(4)三角形ABC旋转的角度是__________;
先化简再求值,其中x=﹣1.(本题6分)
因式分解或解方程组(每小题5分,共10分)
(1)(2)
如图,△ABC的边BC在直线上,AC⊥BC,且AC=BC,△EFP的边FP也在直线
上,边EF与边AC重合,且EF=FP。
(1)在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;
(2)将△EFP沿直线向左平移到图2的位置时,EP交AC于点Q,连结AP、BQ。猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想。
如图①是一个长方形ABCD,点P按B→C→D→A方向运动,开始时,以每秒2个单位长度匀速运动,到达C点后,改为每秒a个单位匀速运动,到达D后,改为每秒b个单位匀速运动,在整个运动过程中,三角形ABP的面积S与运动时间t的函数关系如图所示。
求:
(1)AB、BC的长;
(2)a,b的值。