游客
题文

如图示,正方形 ABCD 的顶点 A 在等腰直角三角形 DEF 的斜边 EF 上, EF BC 相交于点 G ,连接 CF

①求证: ΔDAE ΔDCF

②求证: ΔABG ΔCFG

科目 数学   题型 解答题   难度 中等
知识点: 相似三角形的判定 全等三角形的判定与性质 正方形的性质
登录免费查看答案和解析
相关试题

⑴计算:()-1-cos45°+3×(2012-π)0  ⑵解方程:2x2-4x+1=0 (配方法)

如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点,A点在原点的左则,B点的坐标为(3,0),与y轴交于C(0,―3)点,点P是直线BC下方的抛物线上一动点。

⑴求这个二次函数的表达式;
⑵连结PO、PC,在同一平面内把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由;
⑶当点P运动到什么位置时,四边形ABPC的面积最大,并求出此时P点的坐标和四边形ABPC的最大面积.

某工厂生产一种合金薄板(其厚度忽略不计)这些薄板的形状均为正方形,边长(单位:cm)在5~50之间,每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例,在营销过程中得到了表格中的数据,

薄板的边长(cm)
20
30
出厂价(元/张)
50
70

⑴求一张薄板的出厂价与边长之间满足的函数关系式;
⑵已知出厂一张边长为40cm的薄板,获得利润是26元(利润=出厂价-成本价).
①求一张薄板的利润与边长这之间满足的函数关系式.
②当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?

如图,AB为⊙O的直径,AD与⊙O相切于一点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.

⑴求证:BC为⊙O的切线;
⑵若,AD=2,求线段BC的长.

已知甲同学手中藏有三张分别标有数字,1的卡片,乙同学手中藏有三张分别标有数字1,3,2的卡片,卡片的外形相同,现从甲、乙两人手中各任取一张卡片,并将它们的数字分别记为a、b.
⑴请你用树形图或列表法列出所有可能的结果;
⑵现制订这样一个游戏规则,若所选出的a、b能使ax2+bx+1=0有两个不相等的实数根,则称甲胜;否则乙胜,请问这样的游戏规则公平吗?请你用概率知识解释.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号