如图1,经过原点 的抛物线 、 为常数, 与 轴相交于另一点 .直线 在第一象限内和此抛物线相交于点 ,与抛物线的对称轴相交于点 .
(1)求抛物线的解析式;
(2)在 轴上找一点 ,使以点 、 、 为顶点的三角形与以点 、 、 为顶点的三角形相似,求满足条件的点 的坐标;
(3)直线 沿着 轴向右平移得到直线 , 与线段 相交于点 ,与 轴下方的抛物线相交于点 ,过点 作 轴于点 .把 沿直线 折叠,当点 恰好落在抛物线上时(图 ,求直线 的解析式;
(4)在(3)问的条件下(图 ,直线 与 轴相交于点 ,把 绕点 顺时针旋转 得到△ ,点 为直线 上的动点.当△ 为等腰三角形时,求满足条件的点 的坐标.
如图所示,在A岛周围25海里的范围内有暗礁.一轮船由西向东航行到B处时,发现A岛在北偏东60°方向,轮船继续前行20海里,到达C处,发现A岛在北偏东45°方向,该船若不改变航向继续前行,有无触礁的危险?(结果精确到0.1海里)
某公司组织员工到一博览会的A、B、C、D、E五个展馆参观,公司所购买的门票种类、数量绘制成的条形统计图和扇形统计图如图所示:
根据图中信息解答下列问题:
(1)该公司共组织了名员工参观博览会;扇形统计图中的m=,n=;
(2)补全条形统计图;
(3)求扇形统计图中表示参观B馆的扇形圆心角的度数;
(4)从该公司参观博览会的员工中任选一名,选中参观E馆员工的概率是多少?
如图,在⊙O中,AB为⊙O的直径,C、D为⊙O上两点,弦AC=,△ACD为等边三角形,CD、AB相交于点E.
(1)求∠BAC的度数;
(2)求⊙O的半径;
(3)求CE的长.
先化简再求值:,其中
是不等式组
的整数解.
如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(0,3),C(1,0).
(1)求此抛物线的解析式.
(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.
①动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;
②连接PA,以AP为边作图示一侧的正方形APMN,随着点P的运动,正方形的大小、位置也随之改变.
当顶点M或N恰好落在抛物线对称轴上时,求出对应的P点的坐标.(结果保留根号)