图1是某小区入口实景图,图2是该入口抽象成的平面示意图.已知入口 宽3.9米,门卫室外墙 上的 点处装有一盏路灯,点 与地面 的距离为3.3米,灯臂 长为1.2米(灯罩长度忽略不计), .
(1)求点 到地面的距离;
(2)某搬家公司一辆总宽2.55米,总高3.5米的货车从该入口进入时,货车需与护栏 保持0.65米的安全距离,此时,货车能否安全通过?若能,请通过计算说明;若不能,请说明理由.(参考数据: ,结果精确到0.01米)
某商品的进价为每千克40元,销售单价与月销售量的关系如下表(每千克售价不能高于65元):
销售单价(元) |
50 |
53 |
56 |
59 |
62 |
65 |
月销售量(千克) |
420 |
360 |
300 |
240 |
180 |
120 |
该商品以每千克50元为售价,在此基础上设每千克的售价上涨元(
为正整数),每个月的销售利润为
元.
(1)求与
的函数关系式,并直接写出自变量
的取值范围;
(2)每千克商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
如图,在正△ABC中,点D是AC的中点,点E在BC上,且=
.
求证:(1)△ABE∽△DCE;
(2),求
如图,斜坡AC的坡度(坡比)为1:,AC=10米.坡顶有一垂直于水平面的旗杆BC,旗杆顶端B点与A点有一条彩带AB相连,AB=14米.试求旗杆BC的高度.
如图,矩形ABCD内接于⊙O,且AB=,BC=1,求图中阴影部分所表示的扇形OAD的面积.
如图,已知A(-4,),B(2,-4)是一次函数
的图象和反比例函数
的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线AB与轴的交点C的坐标及△AOB的面积;
(3)当取何值时,反比例函数值大于一次函数值.