如图1,抛物线 与 轴交于 , 两点,与 轴交于点 , ,矩形 的边 ,延长 交抛物线于点 .
(1)求抛物线的解析式;
(2)如图2,点 是直线 上方抛物线上的一个动点,过点 作 轴的平行线交直线 于点 ,作 ,垂足为 .设 的长为 ,点 的横坐标为 ,求 与 的函数关系式(不必写出 的取值范围),并求出 的最大值;
(3)如果点 是抛物线对称轴上的一点,抛物线上是否存在点 ,使得以 , , , 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点 的坐标;若不存在,请说明理由.
(1)计算:;
(2)解不等式,并将其解集表示在数轴上.
一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:
(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?
(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?
(攀枝花)某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.
(1)若该超市一次性购进两种商品共80件,且恰好用去1600元,问购进甲、乙两种商品各多少件?
(2)若该超市要使两种商品共80件的购进费用不超过1640元,且总利润(利润=售价﹣进价)不少于600元.请你帮助该超市设计相应的进货方案,并指出使该超市利润最大的方案.
(巴中)解不等式:,并把解集表示在数轴上.
(广元)经统计分析.某市跨河大桥上的车流速度v(千米/时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米的时候就造成交通堵塞.此时车流速度为0千米/时;当车流密度不超过20辆/千米,车流速度为80千米/时.研究表明:当时,车流速度v是车流密度x的一次函数.
(1)求大桥上车流密度为100辆/千米时的车流速度;
(2)在某一交通时段.为使大桥上的车流速度大于60千米/时且小于80千米/时,应把大桥上的车流密度控制在什么范围内?