游客
题文

如图1,抛物线 y = a x 2 + bx + 2 x 轴交于 A B 两点,与 y 轴交于点 C AB = 4 ,矩形 OBDC 的边 CD = 1 ,延长 DC 交抛物线于点 E

(1)求抛物线的解析式;

(2)如图2,点 P 是直线 EO 上方抛物线上的一个动点,过点 P y 轴的平行线交直线 EO 于点 G ,作 PH EO ,垂足为 H .设 PH 的长为 l ,点 P 的横坐标为 m ,求 l m 的函数关系式(不必写出 m 的取值范围),并求出 l 的最大值;

(3)如果点 N 是抛物线对称轴上的一点,抛物线上是否存在点 M ,使得以 M A C N 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点 M 的坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数的性质 待定系数法求二次函数解析式 二次函数综合题
登录免费查看答案和解析
相关试题

计算:(x﹣2y)(x+2y)+4y2

先化简,再求值:5(3x2y﹣xy2)﹣4(﹣xy2+3x2y),其中x=﹣2,y=3.

计算:(1)﹣(2a﹣b)+[a﹣(3a+4b)]
(2)(a+b)(a2﹣ab+b2

计算:(a﹣1)(a2+a+1)

已知ab2=﹣1,求(﹣ab)(a2b5﹣ab3﹣b)的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号