游客
题文

如图,抛物线 y = 1 2 x 2 + bx + c x 轴交于点 A 和点 B ,与 y 轴交于点 C ,点 B 坐标为 ( 6 , 0 ) ,点 C 坐标为 ( 0 , 6 ) ,点 D 是抛物线的顶点,过点 D x 轴的垂线,垂足为 E ,连接 BD

(1)求抛物线的解析式及点 D 的坐标;

(2)点 F 是抛物线上的动点,当 FBA = BDE 时,求点 F 的坐标;

(3)若点 M 是抛物线上的动点,过点 M MN / / x 轴与抛物线交于点 N ,点 P x 轴上,点 Q 在坐标平面内,以线段 MN 为对角线作正方形 MPNQ ,请写出点 Q 的坐标.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数的性质 待定系数法求二次函数解析式 二次函数综合题
登录免费查看答案和解析
相关试题

如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.

(1)求线段CD的长;
(2)当t为何值时,△CPQ与△ABC相似?
(3)当t为何值时,△CPQ为等腰三角形?

如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.

(1)证明:BE=CF;
(2)当点E、F在BC、CD上滑动时,四边形AECF面积是否发生变化?如果不变,求出这个定值;
(3)设BE=x,△CEF的面积为y,求y与x之间的函数关系式(不写出自变量x取值范围).

如图,在直角坐标系中,直线轴,轴分别交于两点,以为边在第二象限内作矩形,使

(1)求点,点的坐标;
(2)过点轴,垂足为,求证:
(3)求点的坐标.

已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).

(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是
(3)△A2B2C2的面积是 平方单位.

某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出 500千克.经市场调查发现,每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号