游客
题文

某班级同学从学校出发去扎龙自然保护区研学旅行,一部分乘坐大客车先出发,余下的几人 20 min 后乘坐小轿车沿同一路线出行.大客车中途停车等候,小轿车赶上来之后,大客车以出发时速度的 10 7 继续行驶,小轿车保持原速度不变.小轿车司机因路线不熟错过了景点入口,在驶过景点入口 6 km 时,原路提速返回,恰好与大客车同时到达景点入口.两车距学校的路程 S (单位: km ) 和行驶时间 t (单位: min ) 之间的函数关系如图所示.

请结合图象解决下面问题:

(1)学校到景点的路程为   km ,大客车途中停留了   min a =   

(2)在小轿车司机驶过景点入口时,大客车离景点入口还有多远?

(3)小轿车司机到达景点入口时发现本路段限速 80 km / h ,请你帮助小轿车司机计算折返时是否超速?

(4)若大客车一直以出发时的速度行驶,中途不再停车,那么小轿车折返后到达景点入口,需等待  分钟,大客车才能到达景点入口.

科目 数学   题型 解答题   难度 中等
知识点: 一次函数的应用
登录免费查看答案和解析
相关试题

第一盒中有1个白球、1个黑球,第二盒中有1个白球,2个黑球.这些球除颜色外无其他差别,分别从每个盒中随机取出1个球,用画树状图或列表的方法,求取出的2个球都是白球的概率.

先化简,再求值: ( x + 2 ) ( x - 2 ) - x ( x - 1 ) ,其中 x = 1 2

在平面直角坐标系中,抛物线 y = 2 ( x - m ) 2 + 2 m ( m 为常数)的顶点为 A

(1)当 m = 1 2 时,点 A 的坐标是   ,抛物线与 y 轴交点的坐标是   

(2)若点 A 在第一象限,且 OA = 5 ,求此抛物线所对应的二次函数的表达式,并写出函数值 y x 的增大而减小时 x 的取值范围;

(3)当 x 2 m 时,若函数 y = 2 ( x - m ) 2 + 2 m 的最小值为3,求 m 的值;

(4)分别过点 P ( 4 , 2 ) Q ( 4 , 2 - 2 m ) y 轴的垂线,交抛物线的对称轴于点 M N .当抛物线 y = 2 ( x - m ) 2 + 2 m 与四边形 PQNM 的边有两个交点时,将这两个交点分别记为点 B 、点 C ,且点 B 的纵坐标大于点 C 的纵坐标.若点 B y 轴的距离与点 C x 轴的距离相等,直接写出 m 的值.

如图,在 ΔABC 中, C = 90 ° AB = 5 BC = 3 ,点 D 为边 AC 的中点.动点 P 从点 A 出发,沿折线 AB - BC 以每秒1个单位长度的速度向点 C 运动,当点 P 不与点 A C 重合时,连结 PD .作点 A 关于直线 PD 的对称点 A ' ,连结 A ' D A ' A .设点 P 的运动时间为 t 秒.

(1)线段 AD 的长为   

(2)用含 t 的代数式表示线段 BP 的长;

(3)当点 A ' ΔABC 内部时,求 t 的取值范围;

(4)当 AA ' D B 相等时,直接写出 t 的值.

实践与探究

操作一:如图①,已知正方形纸片 ABCD ,将正方形纸片沿过点 A 的直线折叠,使点 B 落在正方形 ABCD 的内部,点 B 的对应点为点 M ,折痕为 AE ,再将纸片沿过点 A 的直线折叠,使 AD AM 重合,折痕为 AF ,则 EAF =   度.

操作二:如图②,将正方形纸片沿 EF 继续折叠,点 C 的对应点为点 N .我们发现,当点 E 的位置不同时,点 N 的位置也不同.当点 E BC 边的某一位置时,点 N 恰好落在折痕 AE 上,则 AEF =   度.

在图②中,运用以上操作所得结论,解答下列问题:

(1)设 AM NF 的交点为点 P .求证: ΔANP ΔFNE

(2)若 AB = 3 ,则线段 AP 的长为   

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号