如图,在平面直角坐标系中,矩形 的边 在 轴上, 、 的长分别是一元二次方程 的两个根 , ,边 交 轴于点 ,动点 以每秒1个单位长度的速度,从点 出发沿折线段 向点 运动,运动的时间为 秒,设 的面积为 .
(1)求点 的坐标;
(2)求 关于 的函数关系式,并写出自变量的取值范围;
(3)在点 运动的过程中,是否存在点 ,使 是以 为腰的等腰三角形?若存在,直接写出点 的坐标;若不存在,请说明理由.
如图,矩形 的对角线 , 交于点 ,且 , ,连接 .求证: .
先化简,再求值: ,其中 .
如图,直线 与 轴交于点 ,与 轴交于点 ,点 为线段 的中点,点 是线段 上一动点(不与点 、 重合).
(1)请直接写出点 、点 、点 的坐标;
(2)连接 ,在第一象限内将 沿 翻折得到 ,点 的对应点为点 .若 ,求线段 的长;
(3)在(2)的条件下,设抛物线 的顶点为点 .
①若点 在 内部(不包括边),求 的取值范围;
②在平面直角坐标系内是否存在点 ,使 最大?若存在,请直接写出点 的坐标;若不存在,请说明理由.
数学课外活动小组的同学在学习了完全平方公式之后,针对两个正数之和与这两个正数之积的算术平方根的两倍之间的关系进行了探究,请阅读以下探究过程并解决问题.
猜想发现
由 ; ; ; ; ; .
猜想:如果 , ,那么存在 (当且仅当 时等号成立).
猜想证明
,
①当且仅当 ,即 时, , ;
②当 ,即 时, , .
综合上述可得:若 , ,则 成立(当且仅当 时等号成立).
猜想运用
对于函数 ,当 取何值时,函数 的值最小?最小值是多少?
变式探究
对于函数 ,当 取何值时,函数 的值最小?最小值是多少?
拓展应用
疫情期间,为了解决疑似人员的临时隔离问题.高速公路检测站入口处,检测人员利用检测站的一面墙(墙的长度不限),用63米长的钢丝网围成了9间相同的长方形隔离房,如图.设每间离房的面积为 (米 .问:每间隔离房的长、宽各为多少时,可使每间隔离房的面积 最大?最大面积是多少?
如图,在 中, , 为 边上一点,以 为圆心, 长为半径的 与 边相切于点 ,交 于点 .
(1)求证: ;
(2)连接 ,若 , ,求线段 的长.