游客
题文

如图1,点 A 坐标为 ( 2 , 0 ) ,以 OA 为边在第一象限内作等边 ΔOAB ,点 C x 轴上一动点,且在点 A 右侧,连接 BC ,以 BC 为边在第一象限内作等边 ΔBCD ,连接 AD BC E

(1)①直接回答: ΔOBC ΔABD 全等吗?

②试说明:无论点 C 如何移动, AD 始终与 OB 平行;

(2)当点 C 运动到使 A C 2 = AE · AD 时,如图2,经过 O B C 三点的抛物线为 y 1 .试问: y 1 上是否存在动点 P ,使 ΔBEP 为直角三角形且 BE 为直角边?若存在,求出点 P 坐标;若不存在,说明理由;

(3)在(2)的条件下,将 y 1 沿 x 轴翻折得 y 2 ,设 y 1 y 2 组成的图形为 M ,函数 y = 3 x + 3 m 的图象 l M 有公共点.试写出: l M 的公共点为3个时, m 的取值.

科目 数学   题型 解答题   难度 较难
知识点: 相似三角形的判定与性质 全等三角形的判定与性质 二次函数综合题
登录免费查看答案和解析
相关试题

(本题10分)已知如图,在平面直角坐标系中,A(-1,-3),OB=,OB与x轴所夹锐角是45°.

(1)求B点坐标;
(2)判断△ABO的形状;
(3)求△ABO最长边上的中线长.

(本题10分)将长为2.5米的梯子AC斜靠在墙上,梯子的底部离墙的底端1.5米(即图中BC的长).

(1)求梯子的顶端与地面的距离;
(2)若梯子顶端A下滑1.3米,那么梯子底端C向左移动了多少米?

(本题10分)如图,在等边三角形ABC中,点D,E分别在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.

(1)求∠F的度数;
(2)若CD=2,求DF的长.

(本题10分)如图,在平面直角坐标系xOy中,点A(−2,10),点B(6,10).

(1)只用直尺(没有刻度)和圆规,求作一个点P,使点P同时满足下列两个条件:
①点P到A,B两点的距离相等;②点P到两坐标轴的距离相等.(要求保留作图痕迹,不必写出作法)
(2)求出(1)中点P的坐标.

(本题10分)已知:等腰三角形的周长为80.
(1)写出底边长y与腰长x的函数表达式;
(2)当腰长为30时,底边长为多少?
(3)当底边长为8时,腰长为多少?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号