游客
题文

在平面直角坐标系中,我们定义直线 y = ax - a 为抛物线 y = a x 2 + bx + c ( a b c 为常数, a 0 ) 的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在 y 轴上的三角形为其“梦想三角形”.

已知抛物线 y = - 2 3 3 x 2 - 4 3 3 x + 2 3 与其“梦想直线”交于 A B 两点(点 A 在点 B 的左侧),与 x 轴负半轴交于点 C

(1)填空:该抛物线的“梦想直线”的解析式为           ,点 A 的坐标为     ,点 B 的坐标为     

(2)如图,点 M 为线段 CB 上一动点,将 ΔACM AM 所在直线为对称轴翻折,点 C 的对称点为 N ,若 ΔAMN 为该抛物线的“梦想三角形”,求点 N 的坐标;

(3)当点 E 在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点 F ,使得以点 A C E F 为顶点的四边形为平行四边形?若存在,请直接写出点 E F 的坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数的性质 二次函数综合题
登录免费查看答案和解析
相关试题

(满分l0分)如图,在△ABC中,∠ACB=90°,点E为AB中点,连结CE,过点E作ED上BC于点D,在DE的延长线上取一点F,使得AF=CE,求证:四边形ACEF是平行四边形。

(满分l2分)如图,已知△ABC的三个顶点的坐标分别为A(-2,-3),B(-6,0),C(-1,0).

(1)请直接写出点A关于x轴对称的点的坐标;
(2)将△ABC绕坐标原点O按逆时针方向旋转90°.画出图形,并直接写出点B的对应点的坐标;
(3)请直接写出:以A,B,C为顶点的平行四边形的第四个顶点D的坐标.

(每小题7分,共14分)
(1)计算:︱-5︱++2-1-sin30°;
(2)计算:(x-y+)( x+y-).

(满分l4分)如图已知直线l1:y=x+与直线l2:y=2x+16相交于点C,l1,l2分别交x轴于A,B两点.矩形DEFG的顶点D,E分别在直线l1,l2上,顶点F,G都在X轴上,且点G与点B重合.
(1)求△ABC的面积;
(2)求矩形DEFG的边DE与EF的长;
(3)若此时矩形DEFG,沿x轴的反方向以每秒l个单位长度的速度平移,设移动时间为t 5(0≤t≤12),矩形DEFG与△ABC重叠部分的面积为S,求S关于t的函数关系式,并写出相应的t的取值范围.

(满分l2分)某商店在四个月的试销期内,只销售A,B两个品牌的电视机,共售出400台.试销结束后,将决定经销其中的一个品牌,为作出决定,经销人员正在绘制两幅统计图,如图
(1)第四个月销量占总销量的百分比是_______;
(2)在图10-13中补全表示B品牌电视机月销量的折线;
(3)为跟踪调查电视机的使用情况,从该商店第四个月售出的电视机中,随机抽取一台,求抽到B品牌电视机的概率;
(4)经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断该商店应经销哪个品牌的电视机.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号