如图,在平面直角坐标系中,抛物线 与 轴交于 、 两点,与 轴交于点 ,且 , , .
(1)求抛物线的解析式;
(2)点 从 点出发,在线段 上以每秒3个单位长度的速度向 点运动,同时,点 从 出发,在线段 上以每秒1个单位长度的速度向 点运动,当其中一个点到达终点时,另一个点也停止运动,当 存在时,求运动多少秒使 的面积最大,最大面积是多少?
(3)在(2)的条件下, 面积最大时,在 上方的抛物线上是否存在点 ,使 的面积是 面积的9倍?若存在,求点 的坐标;若不存在,请说明理由.
如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以证明.
垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如下:
根据图表解答下列问题:
(1)请将条形统计图补充完整;
(2)在抽样数据中,产生的有害垃圾共 吨;
(3)调查发现,在可回收物中塑料类垃圾占,每回收1吨塑料类垃圾可获得0.7吨二级原料.假设该城市每月产生的生活垃圾为5 000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?
解不等式组.
已知:抛物线C1:y=x2。如图(1),平移抛物线C1得到抛物线C2,C2经过C1的顶点O和A(2,0),C2的对称轴分别交C1、C2于点B、D。
(1)求抛物线C2的解析式;
(2)探究四边形ODAB的形状并证明你的结论;
(3)如图(2),将抛物线C2向下平移m个单位(m>0)得抛物线C3,C3的顶点为G,与y轴交于M。点N是M关于x轴的对称点,点P()在直线MG上。问:当m为何值时,在抛物线C3上存在点Q,使得以M、N、P、Q为顶点的四边形为平行四边形?
如图(1),在Rt△ABC, ∠ACB=90°,分别以AB、BC为一边向外作正方形ABFG、BCED,连结AD、CF,AD与CF交于点M。
(1)求证:△ABD≌△FBC;
(2)如图(2),已知AD=6,求四边形AFDC的面积;
(3)在△ABC中,设BC=a,AC=b,AB=c,当∠ACB≠90°时,c2≠a2+b2。在任意△ABC中,c2=a2+b2+k。就a=3,b=2的情形,探究k的取值范围(只需写出你得到的结论即可)。