游客
题文

攀枝花芒果由于品质高、口感好而闻名全国,通过优质快捷的网络销售渠道,小明的妈妈先购买了2箱 A 品种芒果和3箱 B 品种芒果,共花费450元;后又购买了1箱 A 品种芒果和2箱 B 品种芒果,共花费275元(每次两种芒果的售价都不变).

(1)问 A 品种芒果和 B 品种芒果的售价分别是每箱多少元?

(2)现要购买两种芒果共18箱,要求 B 品种芒果的数量不少于 A 品种芒果数量的2倍,但不超过 A 品种芒果数量的4倍,请你设计购买方案,并写出所需费用最低的购买方案.

科目 数学   题型 解答题   难度 中等
知识点: 二元一次方程组的应用 一次函数的应用
登录免费查看答案和解析
相关试题

我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图3中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.
特例探索
(1)如图1,当∠ABE=45°,c=时,a=,b=
如图2,当∠ABE=30°,c=4时,a=,b=

归纳证明
(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,请利用图3证明你发现的关系式;
拓展应用
(3)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG,AD=,AB=3.求AF的长.

如图,已知二次函数L1:y=ax2-2ax+a+3(a>0)和二次函数L2:y=-a(x+1)2+1(a>0)图像的顶点分别为M,N,与y轴分别交于点E,F.

(1)函数y=ax2-2ax+a+3(a>0)的最小值为;当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是
(2)当EF=MN时,求a的值,并判断四边形ENFM的形状(直接写出,不必证明);
(3)若二次函数L2的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程-a(x+1)2+1=0的解.

甲、乙两人在100米直道AB上练习匀速往返跑,若甲、乙分别在A,B两端同时出发,分别到另一端点掉头,掉头时间不计,速度分别为5m/s和4m/s.
(1)在坐标系中,虚线表示乙离A端的距离s(单位:m)与运动时间t(单位:s)之间的函数图象(0≤t≤200),请在同一坐标系中用实线画出甲离A端的距离s与运动时间t之间的函数图象(0≤t≤200);

(2)根据(1)中所画图象,完成下列表格:

两人相遇次数
(单位:次)
1
2
3
4

n
两人所跑路程之和(单位:m)
100
300





(3)①直接写出甲、乙两人分别在第一个100m内,s与t的函数解析式,并指出自变量t的取值范围;
②求甲、乙第6此相遇时t的值.

如图,已知直线y=ax+b与双曲线交于A(x1,y1),B(x2,y2)两点(A与B不重合),直线AB与x轴交于点P(x0,0),与y轴交于点C.

(1)若A,B两点坐标分别为(1,3),(3,y2).求点P的坐标;
(2)若b=y1+1,点P的坐标为(6,0),且AB=BP,求A,B两点的坐标;
(3)结合(1),(2)中的结果,猜想并用等式表示x1,x2,x0之间的关系(不要求证明).

(1)如图1,纸片□ABCD中,AD=5,S□ABCD=15.过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE'的位置,拼成四边形AEE'D,则四边形AEE'D的形状为()
A.平行四边形 B.菱形 C.矩形 D.正方形
(2)如图2,在(1)中的四边形纸片AEE'D中,在EE'上取一点F,使EF=4,剪下△AEF,将它平移至△DE'F'的位置,拼成四边形AFF'D.
①求证:四边形AFF'D是菱形;
②求四边形AFF'D的两条对角线的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号