游客
题文

在平面直角坐标系中,点 O 为原点,点 A 的坐标为 ( 6 , 0 ) .如图1,正方形 OBCD 的顶点 B x 轴的负半轴上,点 C 在第二象限.现将正方形 OBCD 绕点 O 顺时针旋转角 α 得到正方形 OEFG

(1)如图2,若 α = 60 ° OE = OA ,求直线 EF 的函数表达式.

(2)若 α 为锐角, tan α = 1 2 ,当 AE 取得最小值时,求正方形 OEFG 的面积.

(3)当正方形 OEFG 的顶点 F 落在 y 轴上时,直线 AE 与直线 FG 相交于点 P ΔOEP 的其中两边之比能否为 2 : 1 ?若能,求点 P 的坐标;若不能,试说明理由

科目 数学   题型 解答题   难度 较难
知识点: 旋转的性质 坐标与图形性质 解直角三角形 相似三角形的判定与性质 几何变换综合题 正方形的性质
登录免费查看答案和解析
相关试题

已知 ΔABC ,以 AB 为直径的 O 分别交 AC D BC E ,连接 ED ,若 ED = EC

(1)求证: AB = AC

(2)若 AB = 4 BC = 2 3 ,求 CD 的长.

如图,四边形 ABC 内接于 O AB = AC AC BD ,垂足为 E ,点 F BD 的延长线上,且 DF = DC ,连接 AF CF

(1)求证: BAC = 2 CAD

(2)若 AF = 10 BC = 4 5 ,求 tan BAD 的值.

Rt Δ ABC 中, ABC = 90 ° ACB = 30 ° ,将 ΔABC 绕点 C 顺时针旋转一定的角度 α 得到 ΔDEC ,点 A B 的对应点分别是 D E

(1)当点 E 恰好在 AC 上时,如图1,求 ADE 的大小;

(2)若 α = 60 ° 时,点 F 是边 AC 中点,如图2,求证:四边形 BEDF 是平行四边形.

已知 ΔABC 和点 A ' ,如图.

(1)以点 A ' 为一个顶点作△ A ' B ' C ' ,使△ A ' B ' C ' ΔABC ,且△ A ' B ' C ' 的面积等于 ΔABC 面积的4倍;(要求:尺规作图,不写作法,保留作图痕迹)

(2)设 D E F 分别是 ΔABC 三边 AB BC AC 的中点, D ' E ' F ' 分别是你所作的△ A ' B ' C ' 三边 A ' B ' B ' C ' C ' A ' 的中点,求证: ΔDEF D ' E ' F '

如图,点 E F 分别是矩形 ABCD 的边 AB CD 上的一点,且 DF = BE .求证: AF = CE

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号