如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.试判断△OEF的形状,并说明理由.
若,求代数式
的值
如图,已知抛物线经过
,
两点,顶点为
.
(1)求抛物线的解析式;
(2)将绕点
顺时针旋转90°后,点
落到点
的位置,
将抛物线沿轴平移后经过点
,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与
轴的交点为
,顶点为
,若点
在平移后的抛物线上,且满足
的面积是
面积的2倍,求点
的坐标.
一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店日净收入.(日净收入=每天的销售额-套餐成本-每天固定支出)
(1)求y与x的函数关系式;
(2)若每份套餐售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元?
(3)该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?
如图,四边形内接于⊙O,
是⊙O的直径,
,垂足为
,
平分
.
(1)求证:是⊙O的切线;
(2)若,求
的长.