(1)操作发现:
如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点在G矩形ABCD内部.小明将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由.
(2)问题解决:保持(1)中的条件不变,若DC=2DF,求值.
(3)类比探究: 保持(1)中的条件不变,若DC=n.DF,求的值(直接写出答案)
解方程:
(本题12分)如图,抛物线经过
的三个顶点,已知
轴,点
在
轴上,点
在
轴上,且
.
(1)求抛物线的对称轴;
(2)写出A,B,C三点的坐标(A,B,C三点的坐标只需写出答案),并求抛物线的解析式;
(3)探究:若点
是抛物线对称轴上且在
轴下方的动点,是否存在
是等腰三角形.若存在,求出所有符合条件的点
坐标;不存在,请说明理由.
(本题12分)AB是⊙O的直径,点E是半圆上一动点(点E与点A、B都不重合),点C是BE延长线上的一点,且CD⊥AB,垂足为D,CD与AE交于点H,点H与点A不重合。(1)求证:△AHD∽△CBD
(2)若CD=AB=2,求HD+HO的值。
(本题10分)如图所示,已知圆锥底面半径r=10cm,母线长为30cm.(1)求它的侧面展开图的圆心角和表面积.
(2)若一蚂蚁从A点出发沿着圆锥侧面行到母线SA的中点B,请你动脑筋想一想它所走的最短路线是多少?为什么?
如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC与E,交BC与D.求证:(1)D是BC的中点;
(2)△BEC∽△ADC;
(3)BC2=2AB·CE.