在篮球比赛中,东东投出的球在点 处反弹,反弹后球运动的路线为抛物线的一部分(如图1所示建立直角坐标系),抛物线顶点为点 .
(1)求该抛物线的函数表达式.
(2)当球运动到点 时被东东抢到, 轴于点 , .
①求 的长.
②东东抢到球后,因遭对方防守无法投篮,他在点 处垂直起跳传球,想将球沿直线快速传给队友华华,目标为华华的接球点 .东东起跳后所持球离地面高度 (传球前)与东东起跳后时间 满足函数关系式 ;小戴在点 处拦截,他比东东晚 垂直起跳,其拦截高度 与东东起跳后时间 的函数关系如图2所示(其中两条抛物线的形状相同).东东的直线传球能否越过小戴的拦截传到点 ?若能,东东应在起跳后什么时间范围内传球?若不能,请说明理由(直线传球过程中球运动时间忽略不计).
已知A=x2-5x,B=x2-10x+5,求A+2B的值.
化简并求值:9x+6x2-3(x-x2),其中x=-2
化简下列各式
⑴ 2(3a-5)+5
⑵ -2x-(3x-1)
如图,抛物线y=x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,0).
(1)求抛物线的解析式及顶点D的坐标;
(2)判断△ABC的形状,证明你的结论;
(3)点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值.
已知:□ABCD的两边AB,AD的长是关于x的方程的两个实数根.
(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;
(2)若AB的长为2,那么□ABCD的周长是多少?