游客
题文

在篮球比赛中,东东投出的球在点 A 处反弹,反弹后球运动的路线为抛物线的一部分(如图1所示建立直角坐标系),抛物线顶点为点 B

(1)求该抛物线的函数表达式.

(2)当球运动到点 C 时被东东抢到, CD x 轴于点 D CD = 2 . 6 m

①求 OD 的长.

②东东抢到球后,因遭对方防守无法投篮,他在点 D 处垂直起跳传球,想将球沿直线快速传给队友华华,目标为华华的接球点 E ( 4 , 1 . 3 ) .东东起跳后所持球离地面高度 h 1 ( m ) (传球前)与东东起跳后时间 t ( s ) 满足函数关系式 h 1 = - 2 ( t - 0 . 5 ) 2 + 2 . 7 ( 0 t 1 ) ;小戴在点 F ( 1 . 5 , 0 ) 处拦截,他比东东晚 0 . 3 s 垂直起跳,其拦截高度 h 2 ( m ) 与东东起跳后时间 t ( s ) 的函数关系如图2所示(其中两条抛物线的形状相同).东东的直线传球能否越过小戴的拦截传到点 E ?若能,东东应在起跳后什么时间范围内传球?若不能,请说明理由(直线传球过程中球运动时间忽略不计).

科目 数学   题型 解答题   难度 较难
知识点: 二次函数的应用
登录免费查看答案和解析
相关试题

一个不透明的口袋中装有4个分别标有数字-1,-2,3,4的小球,它们的形状、大小完全相同.小红先从口袋中随机摸出一个小球记下数字为x;小颖在剩下的3个小球中随机摸出一个小球记下数字为y.
(1)小红摸出标有数字3的小球的概率是
(2)请用列表法或画树状图的方法表示出由x,y确定的点P(x,y)所有可能的结果;
(3)若规定:点P (x,y)在第一象限或第三象限小红获胜;点P(x,y)在第二象限或第四象限则小颖获胜.请分别求出两人获胜的概率.

如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).

(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;
(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.

先化简,再求值:,其中x满足方程:x2+x﹣6=0.

如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE.将△EDC绕点C按顺时针方向旋转,记旋转角为α.
(1)问题发现
①当时,
②当时,
(2)拓展探究
试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情况给出证明.
(3)问题解决
当△EDC旋转至A、D、E三点共线时,直接写出线段BD的长.

某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下:

x
30
32
34
36
y
40
36
32
28

(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);
(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?
(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?并求最大利润。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号