如图,在正方形 中, , 为边 上的两个三等分点,点 关于 的对称点为 , 的延长线交 于点 .
(1)求证: ;
(2)求 的大小;
(3)求证: .
提出问题
如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.
类比探究
如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.
拓展延伸
如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.
如图,某文化广场灯柱AB被钢缆CD固定,已知CB=5米,且sin∠DCB=.
(1)求钢缆CD的长度;
(2)若AD=2米,灯的顶端E距离A处1.6米,且∠EAB=120°,则灯的顶端E距离地面多少米?
如图,一次函数与反比例函数
的图象交于A(2,1),B(-1,
)两点.
(1)求m、k、b的值;
(2)连接OA、OB,计算三角形OAB的面积;
(3)结合图象直接写出不等式的解集.
在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m,规定:当m≥10时为A级,当5≤m<10时为B级,当0≤m<5时为C级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:
(1)求样本数据中为A级的频率;
(2)试估计1000个18~35岁的青年人中“日均发微博条数”为A级的人数;
(3)从样本数据为C级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.
某工厂要加工一批茶叶罐,设计者给出了茶叶罐的三视图,如图10,请你按照三视图确定制作每个密封罐所需钢板的面积.(单位:毫米)