游客
题文

如图,在 ΔABC 中, ACB = 90 ° BC = 6 3 cm AC = 12 cm .点 P CA 边上的一动点,点 P 从点 C 出发以每秒 2 cm 的速度沿 CA 方向匀速运动,以 CP 为边作等边 ΔCPQ (点 B 、点 Q AC 同侧),设点 P 运动的时间为 x 秒, ΔABC ΔCPQ 重叠部分的面积为 S

(1)当点 Q 落在 ΔABC 内部时,求此时 ΔABC ΔCPQ 重叠部分的面积 S (用含 x 的代数式表示,不要求写 x 的取值范围);

(2)当点 Q 落在 AB 上时,求此时 ΔABC ΔCPQ 重叠部分的面积 S 的值;

(3)当点 Q 落在 ΔABC 外部时,求此时 ΔABC ΔCPQ 重叠部分的面积 S (用含 x 的代数式表示).

image.png

科目 数学   题型 解答题   难度 困难
知识点: 相似三角形的判定与性质 二次函数的应用
登录免费查看答案和解析
相关试题

(本题8分)如图,MN//EF,GH//EF,BA⊥CA于点A,若∠1=70º

求:∠ABF的度数.

分解因式:(每小题4分,共8分)
(1)(2)

(12分)如图(1),点A、B、C在同一直线上,且△ABE, △BCD都是等边三角形,连结AD,CE.

(1)△BEC可由△ABD顺时针旋转得到吗?若是,请描述这一旋转变换过程;若不是,请说明理由;
(2)若△BCD绕点B顺时针旋转,使点A,B,C不在同一直线上(如图(2)),则在旋转过程中:
①线段AD与EC的长度相等吗?请说明理由.
②锐角的度数是否改变?若不变,请求出的度数;若改变,请说明理由.
(注:等边三角形的三条边都相等,三个角都是60°)

(10分)如图,CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC。

(1)求证:△ADO≌△AEO
(2)猜想OB与OC的数量关系,并说明理由.

画图题:

(1)如图,已知△ABC和直线m,以直线m为对称轴,画△ABC经轴对称变换后所得的像△DEF。
(2)如图:在正方形网格中有一个△ABC,按要求进行下列作图;
①画出△ABC中BC边上的高。 ②画出先将△ABC向右平移6格,再向上平移3格后的△DEF。③画一个锐角△MNP(要求各顶点在格点上),使其面积等于△ABC的面积。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号