小刚和小亮两人沿着直线跑道都从甲地出发,沿着同一方向到达乙地,甲乙两地之间的距离是720米,先到乙地的人原地休息.已知小刚先从甲地出发4秒后,小亮从甲地出发,两人均保持匀速前行第一次相遇后,保持原速跑一段时间,小刚突然加速,速度比原来增加了2米 秒,并保持这一速度跑到乙地(小刚加速过程忽略不计).小刚与小亮两人的距离 (米 与小亮出发时间 (秒 之间的函数图象,如图所示.根据所给信息解决以下问题.
(1) , ;
(2)求 和 所在直线的解析式;
(3)直接写出 为何值时,两人相距30米.
探究:
(1)a克糖水中有b克糖(a>b>0),则糖的质量与糖水质量的比为_______; 若再添加c克糖(c>0),则糖的质量与糖水的质量的比为________.生活常识告诉我们: 添加的糖完全溶解后,糖水会更甜,请根据所列式子及这个生活常识提炼出一个不等式: ____________.
(2)我们知道山坡的坡角越大,则坡越陡,联想到课本中的结论:tanA的值越大, 则坡越陡,我们会得到一个锐角逐渐变大时,它的正切值随着这个角的变化而变化的规律,请你写出这个规律:_____________.
(3)如图,在Rt△ABC中,∠B=90°,AB=a,BC=b(a>b),延长BA、BC,使AE="CD=c," 直线CA、DE交于点F,请运用(2) 中得到的规律并根据以上提供的几何模型证明你提炼出的不等式.
已知:如图,斜坡AB的倾斜角a,且tanα=,现有一小球从坡底A处以20cm/s 的速度向坡顶B处移动,则小球以多大的速度向上升高?
如图,已知四边形ABCD中,BC=CD=DB,∠ADB=90°,cos∠ABD=.求:
:
.
如图,在菱形ABCD中,AE⊥BC于E,EC=1,sinB=, 求菱形的边长和四边形AECD的周长.
若三角形三边的比是25:24:7,求最小角的正切值、正弦值和余弦值.